Featured Research

from universities, journals, and other organizations

Hard X-ray Nanoprobe Provides New Capability To Study Nanoscale Materials

Date:
June 30, 2008
Source:
DOE/Argonne National Laboratory
Summary:
The Center for Nanoscale Materials' newly operational Hard X-ray Nanoprobe at the US Department of Energy's Argonne National Laboratory is one of the world's most powerful X-ray microscopes. It has been designed to study novel nanoscale materials and devices aimed at, for example, harvesting solar energy more efficiently, providing more efficient lighting, or enabling next-generation computing.

Jörg Maser (left) and Robert Winarski, CNM X-Ray Microscopy Group, prepare an experiment at the Hard X-ray Nanoprobe Beamline at the Advanced Photon Source. The nanoprobe uses brilliant X-rays with photon energies from 3 to 30 keV to probe the properties of nanoscale materials with a spatial resolution of 30 nm. The system provides a combination of scanning-probe and full-field transmission imaging.
Credit: Image courtesy of DOE/Argonne National Laboratory

The Center for Nanoscale Materials' (CNM) newly operational Hard X-ray Nanoprobe at the U.S. Department of Energy's (DOE) Argonne National Laboratory is one of the world's most powerful x-ray microscopes.

It has been designed to study novel nanoscale materials and devices aimed at, for example, harvesting solar energy more efficiently, providing more efficient lighting, or enabling next-generation computing. The weak interaction of hard x-rays with matter allows researchers to penetrate into materials, look through process gases and study sub-surface phenomena. At the same time, this property also has made fabrication of efficient x-ray optics difficult, limiting the degree to which hard x-rays can be focused.

Using advanced x-ray optics called Fresnel zone plates -- similar in appearance to the large Fresnel lenses used to reflect light in lighthouses -- along with a laser-based nanopositioning system, Argonne is able to focus x-rays to the smallest spot yet achieved with this type of illumination source. The microscope combines scanning-probe and full-field transmission imaging to create both three-dimensional visualizations of complex systems and devices as well as to perform sensitive quantitative analysis of elemental composition, chemical states, crystallographic phase and strain.

"It's the highest resolution microscope of its type in the world right now," acting CNM Division Director Stephen Streiffer said. "The Nanoprobe is one of the tools that make the CNM unique."

The Nanoprobe uses x-rays with photon energies between 3-30 kiloelectron volts to produce images with initially 30 nanometer resolution -- roughly the size of 100 atoms. As x-ray optics continue to improve and novel x-ray optics are developed, it is anticipated that significantly higher spatial resolution will be reached over the lifetime of the Nanoprobe.

The Hard X-ray Nanoprobe was designed, constructed and is operated in partnership between the CNM and the X-Ray Science Division of the Advanced Photon Source (APS) at Argonne National Laboratory. The CNM pursues the development and characterization of novel nanoscale materials and devices. The capabilities of Argonne's Advanced Photon Source play a key role in that their hard X-rays, utilized by the Nanoprobe beamline, provide unprecedented capabilities to characterize very small structures.

"The instrument allows characterization of nanoscale materials and devices in previously unavailable detail, and is particularly well suited for the study of buried structures, in real world environments and for dynamics." Nanoprobe Beamline Director Jörg Maser said.

The Nanoprobe became operational in October of 2007 and is open to all science users based on peer review under the user programs of the APS and the CNM. The CNM is a national user facility, providing tools and expertise for nanoscience and nanotechnology research.

Funding for this research was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The mission of the Basic Energy Sciences (BES) program - a multipurpose, scientific research effort - is to foster and support fundamental research to expand the scientific foundations for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use.


Story Source:

The above story is based on materials provided by DOE/Argonne National Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/Argonne National Laboratory. "Hard X-ray Nanoprobe Provides New Capability To Study Nanoscale Materials." ScienceDaily. ScienceDaily, 30 June 2008. <www.sciencedaily.com/releases/2008/06/080624145111.htm>.
DOE/Argonne National Laboratory. (2008, June 30). Hard X-ray Nanoprobe Provides New Capability To Study Nanoscale Materials. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2008/06/080624145111.htm
DOE/Argonne National Laboratory. "Hard X-ray Nanoprobe Provides New Capability To Study Nanoscale Materials." ScienceDaily. www.sciencedaily.com/releases/2008/06/080624145111.htm (accessed October 20, 2014).

Share This



More Matter & Energy News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com
What We Know About Microsoft's Rumored Smartwatch

What We Know About Microsoft's Rumored Smartwatch

Newsy (Oct. 20, 2014) — Microsoft will reportedly release a smartwatch that works across different mobile platforms, has a two-day battery life and tracks heart rate. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins