Featured Research

from universities, journals, and other organizations

Nerve Cells Derived From Stem Cells And Transplanted Into Mice May Lead To Improved Brain Treatments

Date:
June 26, 2008
Source:
Burnham Institute
Summary:
Scientists have genetically programmed embryonic stem cells to become nerve cells when transplanted into the brain, according to a new study. The research, an important step toward developing new treatments for stroke, Alzheimer's, Parkinson's and other neurological conditions showed that mice afflicted by stroke showed therapeutic improvement following transplantation of these cells. None of the mice formed tumors, a major setback in prior attempts at stem cell transplantation.

Scientists at the Burnham Institute for Medical Research have, for the first time, genetically programmed embryonic stem (ES) cells to become nerve cells when transplanted into the brain, according to a new study published in The Journal of Neuroscience.

The research, an important step toward developing new treatments for stroke, Alzheimer's, Parkinson's and other neurological conditions showed that mice afflicted by stroke showed tangible therapeutic improvement following transplantation of these cells. None of the mice formed tumors, which had been a major setback in prior attempts at stem cell transplantation.

The team was led by Stuart A. Lipton, M.D., Ph.D., professor and director of the Del E. Webb Neuroscience, Aging, and Stem Cell Research Center at Burnham. Dr. Lipton is also a clinical neurologist who treats patients with these disorders. Collaborators included investigators from The Scripps Research Institute.

"We found that we could create new nerve cells from stem cells, transplant them effectively and make a positive difference in the behavior of the mice," said Dr. Lipton. "These findings could potentially lead to new treatments for stroke and neurodegenerative diseases such as Parkinson's disease."

Conditions such as stroke, Alzheimer's, Parkinson's and Huntington's disease destroy brain cells, causing speech and memory loss and other debilitating consequences. In theory, transplanting neuronal brain cells could restore at least some brain function, just as heart transplants restore blood flow.

Prior to this research, creating pure neuronal cells from ES cells had been problematic as the cells did not always differentiate into neurons. Sometimes they became glial cells, which lack many of the neurons' desirable properties. Even when the neuronal cells were created successfully, they often died in the brain following transplant--a process called programmed cell death or apoptosis. In addition, the cells would sometimes become tumors.

Dr. Lipton solved these problems by inducing ES cells to express a protein, discovered in his laboratory called myocyte enhancer factor 2C (MEF2C). MEF2C is a transcription factor that turns on specific genes which then drive stem cells to become nerve cells. Using MEF2C, the researchers created colonies of pure neuronal progenitor cells, a stage of development that occurs before becoming a nerve cell, with no tumors. These cells were then transplanted into the brain and later became adult nerve cells. MEF2C also protected the cells from apoptosis once inside the brain.

"To move forward with stem cell-based therapies, we need to have a reliable source of nerve cells that can be easily grown, differentiate in the way that we want them to and remain viable after transplantation," said Dr. Lipton. "MEF2C helps this process first by turning on the genes that, when expressed, make stem cells into nerve cells. It then turns on other genes that keep those new nerve cells from dying. As a result, we were able to produce neuronal progenitor cells that differentiate into a virtually pure population of neurons and survive inside the brain."

The next step was to determine whether the transplanted neural progenitor cells became nerve cells that integrated into the existing network of nerve cells in the brain. Performing intricate electrical studies, Dr. Lipton's investigative team showed that the new nerve cells, derived from the stem cells, could send and receive proper electrical signals to the rest of the brain.

They then determined if the new cells could provide cognitive benefits to the stroke-afflicted mice. The team executed a battery of neurobehavioral tests and found that the mice that received the transplants showed significant behavioral improvements, although their performance did not reach that of the non-stroke control mice. These results suggest that MEF2C expression in the transplanted cells was a significant factor in reducing the stroke-induced deficits.

The work was supported in part by National Institutes of Health (NIH) grants and a Senior Scholar Award in Aging Research from the Ellison Medical Foundation.


Story Source:

The above story is based on materials provided by Burnham Institute. Note: Materials may be edited for content and length.


Cite This Page:

Burnham Institute. "Nerve Cells Derived From Stem Cells And Transplanted Into Mice May Lead To Improved Brain Treatments." ScienceDaily. ScienceDaily, 26 June 2008. <www.sciencedaily.com/releases/2008/06/080624174843.htm>.
Burnham Institute. (2008, June 26). Nerve Cells Derived From Stem Cells And Transplanted Into Mice May Lead To Improved Brain Treatments. ScienceDaily. Retrieved July 23, 2014 from www.sciencedaily.com/releases/2008/06/080624174843.htm
Burnham Institute. "Nerve Cells Derived From Stem Cells And Transplanted Into Mice May Lead To Improved Brain Treatments." ScienceDaily. www.sciencedaily.com/releases/2008/06/080624174843.htm (accessed July 23, 2014).

Share This




More Health & Medicine News

Wednesday, July 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Courts Conflicted Over Healthcare Law

Courts Conflicted Over Healthcare Law

AP (July 22, 2014) Two federal appeals courts issued conflicting rulings Tuesday on the legality of the federally-run healthcare exchange that operates in 36 states. (July 22) Video provided by AP
Powered by NewsLook.com
Why Do People Believe We Only Use 10 Percent Of Our Brains?

Why Do People Believe We Only Use 10 Percent Of Our Brains?

Newsy (July 22, 2014) The new sci-fi thriller "Lucy" is making people question whether we really use all our brainpower. But, as scientists have insisted for years, we do. Video provided by Newsy
Powered by NewsLook.com
Scientists Find New Way To Make Human Platelets

Scientists Find New Way To Make Human Platelets

Newsy (July 22, 2014) Boston scientists have discovered a new way to create fully functioning human platelets using a bioreactor and human stem cells. Video provided by Newsy
Powered by NewsLook.com
Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

Gilead's $1000-a-Pill Drug Could Cure Hep C in HIV-Positive People

TheStreet (July 21, 2014) New research shows Gilead Science's drug Sovaldi helps in curing hepatitis C in those who suffer from HIV. In a medical study, the combination of Gilead's Hep C drug with anti-viral drug Ribavirin cured 76% of HIV-positive patients suffering from the most common hepatitis C strain. Hepatitis C and related complications have been a top cause of death in HIV-positive patients. Typical medication used to treat the disease, including interferon proteins, tended to react badly with HIV drugs. However, Sovaldi's %1,000-a-pill price tag could limit the number of patients able to access the treatment. TheStreet's Keris Lahiff reports from New York. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins