Featured Research

from universities, journals, and other organizations

Resuscitation Technique After Brain Injury May Do More Harm Than Good

Date:
July 2, 2008
Source:
UT Southwestern Medical Center
Summary:
The current standard practice of giving infants and children 100 percent oxygen to prevent brain damage caused by oxygen deprivation may actually inflict additional harm, researchers have found.

The current standard practice of giving infants and children 100 percent oxygen to prevent brain damage caused by oxygen deprivation may actually inflict additional harm, researchers at UT Southwestern Medical Center have found.

Brain damage caused by oxygen deprivation, known as hypoxic-ischemic brain injury, is one of the most common causes of death and long-term neurological damage among infants and children. This can happen during birth trauma, near drowning and other crises.

The UT Southwestern researchers found that mice treated with less than a minute of 100 percent oxygen after a hypoxic-ischemic brain injury suffered far greater rates of brain-cell death and coordination problems similar to cerebral palsy than those allowed to recover with room air.

"This study suggests 100 percent oxygen resuscitation may further damage an already compromised brain," said Dr. Steven Kernie, associate professor of pediatrics and developmental biology and senior author of the study, which appears in the July issue of the Journal of Cerebral Blood Flow & Metabolism.

Most of the damage involved cells that create myelin, a fatty substance that insulates nerve cells and allows them to transmit electrical signals quickly and efficiently. Infants have much less myelin than adults; as myelin develops in children they become more coordinated. Areas of the brain with dense areas of myelin appear white, hence the term "white matter."

"Patients with white-matter injuries develop defects that often result in cerebral palsy and motor deficits," Dr. Kernie said.

Myelin comes from cells called glial cells, or glia, which reach out and wrap part of their fatty membranes around the extensions of nerve cells that pass electrical signals. The brain creates and renews its population of glial cells from a pool of immature cells that can develop into mature glia.

In their study, the researchers briefly deprived mice of oxygen, then gave them either 100 percent oxygen or room air, which contains about 21 percent oxygen, 78 percent nitrogen and 1 percent other gases.

After 72 hours, mice given 100 percent oxygen fared worse than those given room air. For example, they experienced a more disrupted pattern of myelination and developed a motor deficit that mimicked cerebral palsy.

The population of immature glial cells also diminished, suggesting that the animals would have trouble replacing the myelin in the long term.

"We wanted to determine whether recovery in 100 percent oxygen after this sort of brain injury would exacerbate neuronal injury and impair functional recovery, and in these animals, it did impair recovery," Dr. Kernie said. "Our research shows even brief exposure to 100 percent oxygen during resuscitation actually worsens white-matter injuries."

Dr. Kernie said adding pure oxygen to the damaged brain increases a process called oxidative stress, caused by the formation of highly reactive molecules. The researchers found, however, that administering an antioxidant, which halts the harmful oxidation process, reversed the damage in the mice given 100 percent oxygen.

"Further research is needed to determine the best possible concentration of oxygen to use for optimal recovery and to limit secondary brain injury," Dr. Kernie said. "Research is now being done to determine the best way to monitor this sort of brain damage in humans so we can understand how it correlates to the mouse models. There are many emerging noninvasive technologies that can monitor the brain."

Other UT Southwestern researchers involved in the study were Dr. Joshua Koch, a pediatric clinical care fellow and lead author of the study; Darryl Miles, a pediatric clinical instructor; Jennifer Gilley, a student research assistant in pediatrics and developmental biology; and Dr. Cui-Pang Yang, a postdoctoral researcher in pediatrics and developmental biology.

The research was funded by the National Institutes of Health.


Story Source:

The above story is based on materials provided by UT Southwestern Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

UT Southwestern Medical Center. "Resuscitation Technique After Brain Injury May Do More Harm Than Good." ScienceDaily. ScienceDaily, 2 July 2008. <www.sciencedaily.com/releases/2008/07/080701083506.htm>.
UT Southwestern Medical Center. (2008, July 2). Resuscitation Technique After Brain Injury May Do More Harm Than Good. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2008/07/080701083506.htm
UT Southwestern Medical Center. "Resuscitation Technique After Brain Injury May Do More Harm Than Good." ScienceDaily. www.sciencedaily.com/releases/2008/07/080701083506.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins