Featured Research

from universities, journals, and other organizations

Chip-cooling Technology Achieves 'Dramatic' 1,000-watt Capacity

Date:
July 2, 2008
Source:
Purdue University
Summary:
Researchers have developed a technology that uses "microjets" to deposit liquid into tiny channels and remove five times more heat than other experimental high-performance chip-cooling methods for computers and electronics.

Purdue mechanical engineering doctoral student Myung Ki Sung displays a plate containing holes for "microjets," left hand, and a device containing "microchannels," both used in a new design that has been shown to dramatically increase cooling for microchips in computers and electronics. The technology circulates a liquid coolant supplied through the microjets into the microchannels and is capable of cooling chips that produce 1,000 watts of heat per square centimeter, about a five-fold increase over the capacity of today's high performance cooling systems in computers and electronics.
Credit: Purdue News Service photo/David Umberger

Researchers at Purdue University have developed a technology that uses "microjets" to deposit liquid into tiny channels and remove five times more heat than other experimental high-performance chip-cooling methods for computers and electronics.

New technologies will be needed to meet the cooling needs of future chips that produce more heat than current microprocessors. Conventional computer chips generate about 100 watts per square centimeter, peaking in small hot spots that can damage or destroy the delicate circuitry inside microchips. The chips are air-cooled with finned metal plates called heat sinks and often a small fan.

High-performance chips generate far more heat than conventional technologies, said Issam Mudawar, a professor of mechanical engineering who is leading the research.

Other experimental liquid-cooling techniques are limited to a cooling capacity of about 200 watts per square centimeter, Mudawar said.

"In many ways, progress in the computer and electronics industries is becoming increasingly defined by how well you can cool chips," he said. "We have been stalled for several years at the current level of being able to cool at the rate of about 200 watts per square centimeter. We have hit a plateau, a limit."

The new microjet technology is capable of cooling chips that produce more than 1,000 watts of heat per square centimeter, Mudawar said.

"Here we have opened the envelope significantly," he said. "Getting up to 1,000 watts per square centimeter is dramatic and creates so much room now for advances in performance."

Findings were detailed in a research paper presented during the 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, or ITherm 2008, in Orlando, Fla., in May. The paper was written by Mudawar and doctoral student Myung Sung.

"We are proposing a new innovative scheme for achieving unprecedented temperature control capabilities for future defense electronics," Mudawar said.

The Purdue-developed technique circulates a cooling liquid called a hydrofluorocarbon, which is a "dielectric," meaning it will not conduct electricity or cause short circuits.

The cooling system is made of grooves narrower than a millimeter, or thousandth of a meter, wide. These channels are formed on top of a chip and covered with a metal plate containing tiny holes. The coolant is pumped through the holes in microjets, and the liquid then flows along channels to cool the chip. As the liquid is heated by the hot chip inside the channels, it bubbles and momentarily becomes a vapor, facilitating the cooling process, Mudawar said.

The research, funded by the U.S. Office of Naval Research, could lead to a new chip-cooling technology for applications such as advanced radar and propulsion systems and lasers. The approach also might have commercial applications in personal computers, Mudawar said.

The technology is called a hybrid system because it uses a combination of two cooling methods: the microchannels and microjets. In past research using microchannels, the temperature of the coolant varied depending on its location as it moved through the channel.

"That's because the coolant flowed from one end of the channel to the other, heating up along the way," Mudawar said. "By the time the liquid reached the end of the channel, it was hotter than when it began. The microjets allow you to cool uniformly because you are supplying the liquid in the form of jets everywhere along the length of each channel."

Uniform cooling helps to prevent any portion of a chip from overheating. The coolant collects at both ends of the channels and is circulated back through the system.

Hydrofluorocarbons are used in modern air conditioning and refrigeration systems because they are not harmful to the ozone layer in the earth's atmosphere, and they have low global-warming effects. The type of hydrofluorocarbons used in air conditioning, however, is vapor at room temperature, whereas the type used in the experimental chip-cooling system is a liquid.

Hydroflurocarbons are not efficient coolants because they conduct heat at a far lower rate than water. Liquids such as water that readily conduct electricity could cause electrical shorts, whereas dielectric liquids do not.

"Usually, with hydrofluorocarbons, you are barely able to cool at a rate of 200 watts per square centimeter, but this hybrid design boosted the performance dramatically," said Mudawar, who is director of the International Electronic Cooling Alliance and the Boiling and Two-Phase Flow Laboratory, both at Purdue.

Mudawar has developed the cooling technique with mechanical engineering doctoral students Sung and Jaeseon Lee.

Several research papers about the technology have been published in journals, and recent findings were discussed during an Office of Naval Research workshop and conference, the 2007 Thermal Management Program Review in Hilton Head, S.C.

"The work at Purdue shows promise for enabling high-power electronic systems for propulsion, pulsed-power weapons and sensor arrays," said Mark S. Spector, program officer for advanced naval power systems at the Office of Naval Research. "The rapidly increasing use of electronics in military hardware is resulting in unprecedented thermal management needs. The Office of Naval Research, in partnership with academia and industry, is investigating innovative methods to acquire, transport and dissipate waste heat loads that could exceed 1,000 watts per square centimeter."


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Chip-cooling Technology Achieves 'Dramatic' 1,000-watt Capacity." ScienceDaily. ScienceDaily, 2 July 2008. <www.sciencedaily.com/releases/2008/07/080701180141.htm>.
Purdue University. (2008, July 2). Chip-cooling Technology Achieves 'Dramatic' 1,000-watt Capacity. ScienceDaily. Retrieved October 22, 2014 from www.sciencedaily.com/releases/2008/07/080701180141.htm
Purdue University. "Chip-cooling Technology Achieves 'Dramatic' 1,000-watt Capacity." ScienceDaily. www.sciencedaily.com/releases/2008/07/080701180141.htm (accessed October 22, 2014).

Share This



More Matter & Energy News

Wednesday, October 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Thanks, Marty McFly! Hoverboards Could Be Coming In 2015

Newsy (Oct. 21, 2014) If you've ever watched "Back to the Future Part II" and wanted to get your hands on a hoverboard, well, you might soon be in luck. Video provided by Newsy
Powered by NewsLook.com
Robots to Fly Planes Where Humans Can't

Robots to Fly Planes Where Humans Can't

Reuters - Innovations Video Online (Oct. 21, 2014) Researchers in South Korea are developing a robotic pilot that could potentially replace humans in the cockpit. Unlike drones and autopilot programs which are configured for specific aircraft, the robots' humanoid design will allow it to fly any type of plane with no additional sensors. Ben Gruber reports. Video provided by Reuters
Powered by NewsLook.com
Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
China Airlines Swanky New Plane

China Airlines Swanky New Plane

Buzz60 (Oct. 21, 2014) China Airlines debuted their new Boeing 777, and it's more like a swanky hotel bar than an airplane. Enjoy high-tea, a coffee bar, and a full service bar with cocktails and spirits, and lie-flat in your reclining seats. Sean Dowling (@SeanDowlingTV) has the details. Video provided by Buzz60
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins