Featured Research

from universities, journals, and other organizations

How Cells Die Determines Whether Immune System Mounts Response

Date:
July 21, 2008
Source:
Washington University School of Medicine
Summary:
Every moment we live, cells in our bodies are dying. One type of cell death activates an immune response while another type doesn't. Now researchers have figured out how some dying cells signal the immune system. The finding eventually could have important implications in the treatment of autoimmune diseases and cancer.

Every moment we live, cells in our bodies are dying. One type of cell death activates an immune response while another type doesn't. Now researchers at Washington University School of Medicine in St. Louis and St. Jude's Children's Research Hospital in Memphis have figured out how some dying cells signal the immune system. They say the finding eventually could have important implications in the treatment of autoimmune diseases and cancer.

The researchers have found that a molecule, called high mobility group box-1 protein (HMGB1), which cells release when they die, seems to determine whether the immune system is alerted. But what happens to HMGB1 after it's made and whether the immune system ever gets the signal depends on how the cell dies.

"Cells die in two general ways: apoptosis, or programmed cell death, and necrosis, which results from injuries and infections," says Thomas A. Ferguson, Ph.D., a senior investigator on the study and professor of ophthalmology and visual sciences at Washington University. "In general, we don't want the immune system to respond to apoptosis, but we do want an immune response following necrosis because necrotic death can be a sign of infection. Necrotic cells release components to stimulate the immune system, and one is the HMGB1molecule."

Apoptosis normally is a healthy process that occurs all the time, so it shouldn't activate an immune response, according to co-senior investigator Douglas R. Green, Ph.D. the Peter C. Doherty Endowed Professor of Immunology at St. Jude's.

"Apoptosis is an orderly death that occurs during development and tissue turnover, and it's an important process that allows us to replace old, worn-out cells with fresh, new ones," says Green. "We don't need the immune system paying attention as our cells die through apoptosis. When it does react to apoptosis, we can develop autoimmunity, as in diabetes, arthritis and other autoimmune diseases in which the immune system will attack the 'self.'"

The researchers say scientists had believed that necrotic cells released HMGB1 whereas apoptotic cells did not. The problem is that experiments in Ferguson's laboratory and elsewhere have found that in some cases, apoptotic cells also release the HMGB1 protein.

"Whether they were apoptotic or necrotic, we found that dying cells were releasing the protein, but the cells that were undergoing apoptosis still weren't stimulating the immune system," Ferguson says. "So our question was, 'If the molecule being released is the same, why is it stimulating the immune system in one situation and not in another?'"

Further experiments showed that when they die, apoptotic cells also produce free radicals, and those reactive oxygen free radicals modify HMGB1 to prevent it from stimulating the immune system. In necrosis, no free radicals are produced, so HMGB1 both signals and stimulates an immune system response.

Free radicals have been thought to be bad for us, but in the case of cell death, they have the beneficial effect of preventing the immune system from attacking and destroying healthy cells. The finding may have important implications, both for some autoimmune processes and for cancer treatment. The researchers believe it may be possible to use HMGB1 to stoke up the immune system in response to cancer.

"Sometimes tumors can stimulate an immune response," says Green. "This study suggests that when we give chemotherapy, whether dying tumor cells make these reactive oxygen free radicals could be very important because if we can mount an immune response to the tumor, chemotherapy might be more successful, and we may be able to keep the cancer from coming back."

The inverse would be true in autoimmune diseases.

"If we could oxidize the danger signals coming from dying cells in a way similar to how apoptotic cells release free radicals to modify HMGB1, maybe autoimmunity could be down-regulated," Ferguson says.

This research was supported by the National Eye Institute and the National Institute of Allergy and Infectious Diseases of the Institutes of Health, the Foundation Fighting Blindness and Research to Prevent Blindness.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA. Immune tolerance induction by apoptotic cells requires caspase-dependent oxidation of HMGB1. Immunity, 29, pp. 21-32. July 18, 2008 DOI: 10.1016/j.immuni.2008.05.013

Cite This Page:

Washington University School of Medicine. "How Cells Die Determines Whether Immune System Mounts Response." ScienceDaily. ScienceDaily, 21 July 2008. <www.sciencedaily.com/releases/2008/07/080717134612.htm>.
Washington University School of Medicine. (2008, July 21). How Cells Die Determines Whether Immune System Mounts Response. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2008/07/080717134612.htm
Washington University School of Medicine. "How Cells Die Determines Whether Immune System Mounts Response." ScienceDaily. www.sciencedaily.com/releases/2008/07/080717134612.htm (accessed September 21, 2014).

Share This



More Health & Medicine News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Sierra Leone in Lockdown to Control Ebola

Sierra Leone in Lockdown to Control Ebola

AP (Sep. 21, 2014) Sierra Leone residents remained in lockdown on Saturday as part of a massive effort to confine millions of people to their homes in a bid to stem the biggest Ebola outbreak in history. (Sept. 20) Video provided by AP
Powered by NewsLook.com
Sierra Leone's Nationwide Ebola Curfew Underway

Sierra Leone's Nationwide Ebola Curfew Underway

Newsy (Sep. 20, 2014) Sierra Leone is locked down as aid workers and volunteers look for new cases of Ebola. Video provided by Newsy
Powered by NewsLook.com
Changes Found In Brain After One Dose Of Antidepressants

Changes Found In Brain After One Dose Of Antidepressants

Newsy (Sep. 19, 2014) A study suggest antidepressants can kick in much sooner than previously thought. Video provided by Newsy
Powered by NewsLook.com
Could Grief Affect The Immune Systems Of Senior Citizens?

Could Grief Affect The Immune Systems Of Senior Citizens?

Newsy (Sep. 19, 2014) The study found elderly people are much more likely to become susceptible to infection than younger adults going though a similar situation. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins