Featured Research

from universities, journals, and other organizations

Stress Hormone Found To Regulate Brain Neurotransmission

Date:
August 11, 2008
Source:
CNRS
Summary:
Researchers have just shown how one of the stress hormones regulates brain neurotransmission on the short and long term and enables neuronal connections to adapt.

The trajectory of receptors (in red) is shown here after corticosterone was applied to hippocampal neurons. The receptors, detected with nanoparticles (Quantum Dot), diffuse in and out of synapses (in green).
Credit: Copyright Laboratoire Physiologie Cellulaire de la Synapse

CNRS and Inserm(1) researchers, working at the future NeuroCampus in Bordeaux, have just shown how one of the stress hormones regulates brain neurotransmission on the short and long term and enables neuronal connections to adapt.

Related Articles


This work, directed by Laurent Groc and Francis Chaouloff, may lead to the identification of new therapeutic targets for psychiatric illnesses such as post-traumatic stress disorder and depression.

When we are subjected to a stress, our adrenal glands secrete hormones that affect our entire body. One of these hormones, cortisol, enables us to adapt physically and mentally to the stimulus. Following a major or repeated stress that the individual has no control over, however, cortisol is secreted in great quantities over a long period of time. This hypersecretion has damaging effects on the individual, to the point of accelerating aging and facilitating the onset of illnesses such as depression.

The researchers have shown that in one part of the brain, the hippocampus, corticosterone (the equivalent of human cortisol in laboratory rats) modifies the intensity of transmissions made by excitatory synapses(2). To the researchers' great surprise, this hormone increases the mobility of receptors found on the surface of neurons, thus allowing synaptic connections to adapt more effectively to the demands of brain activity. The stress hormone can be thought of as an alarm that mobilizes the receptors.

In addition, briefly exposing neurons to corticosterone increases synaptic plasticity(3), due to increased receptor mobility. Although this first effect is beneficial, in the case of prolonged stress (corticosterone stimulation over several hours), synaptic plasticity is reduced. This inverse effect can be explained by the fact that after a certain amount of time, the stress hormone not only increases receptor mobility, but also increases the number of receptors mobilized at the synapse level, leading to a decrease in plasticity.

The characterization of these newly discovered mechanisms opens up numerous possibilities for future research that could enhance both fundamental knowledge and clinical benefits. We can now imagine that in certain individuals subjected to major stress, lack of receptor mobility contributes to a lack of adaptation. Under stressful conditions, synaptic plasticity would then depend on the dynamic interactions between cortisol and the neuronal receptors that modulate brain activity. In the end, better mobility means better adaptation.

Notes:

(1) Laboratoire Physiologie Cellulaire de la Synapse UMR5091 CNRS and Neurocentre U862 Inserm, Universitι de Bordeaux.

(2) Excitatory synapses represent more than 80% of synapses. The neurons communicate between each other at the synapse level. Broadly, this junction contains a pre-synaptic element, which sends the information, and a post-synaptic element that receives the information. When the pre-synaptic compartment is stimulated by an electrical signal, it releases chemical messengers called neurotransmitters. Then, several milliseconds later, these neurotransmitters bind to special receptors.

(3) A synapse's ability to modify the information that it transmits.


Story Source:

The above story is based on materials provided by CNRS. Note: Materials may be edited for content and length.


Journal Reference:

  1. Groc L., Choquet D., Chaouloff F. The stress hormone corticosterone conditions AMPA receptor surface trafficking and synaptic potentiation. Nature Neuroscience, Online July 11, 2008 DOI: 10.1038/nn.2150

Cite This Page:

CNRS. "Stress Hormone Found To Regulate Brain Neurotransmission." ScienceDaily. ScienceDaily, 11 August 2008. <www.sciencedaily.com/releases/2008/08/080807072125.htm>.
CNRS. (2008, August 11). Stress Hormone Found To Regulate Brain Neurotransmission. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2008/08/080807072125.htm
CNRS. "Stress Hormone Found To Regulate Brain Neurotransmission." ScienceDaily. www.sciencedaily.com/releases/2008/08/080807072125.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) — A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) — Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) — A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) — Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins