Featured Research

from universities, journals, and other organizations

Trigger For Brain Plasticity Identified: Signal Comes, Surprisingly, From Outside The Brain

Date:
August 9, 2008
Source:
Children's Hospital Boston
Summary:
Researchers have long sought a factor that can trigger the brain's ability to learn -- recapturing the "sponge-like" quality of childhood. Called Otx2, it causes a key type of cell in the cortex to mature, initiating a critical period -- a window of heightened brain plasticity, when the brain can readily make new connections

Researchers have long sought a factor that can trigger the brain's ability to learn – and perhaps recapture the "sponge-like" quality of childhood. In the August 8 issue of the journal Cell, neuroscientists at Children's Hospital Boston report that they've identified such a factor, a protein called Otx 2.

Otx2 helps a key type of cell in the cortex to mature, initiating a critical period -- a window of heightened brain plasticity, when the brain can readily make new connections.

The work was done in a mouse model of the visual system, a classic model for understanding how the brain sets up its wiring in response to input from the outside world. But Takao Hensch, PhD, of the Neurobiology Program and Department of Neurology at Children's, the study's senior investigator, speculates that there may be similar factors from the auditory, olfactory and other sensory systems that help time critical periods. Timing is important, because the brain needs to rewire itself at the right moment -- when it's getting the optimal sensory input.

"If the timing is off, the brain won't set up its circuits properly," Hensch says.

Being able to control the timing of critical periods in different parts of the brain could possibly ameliorate developmental disorders such as autism, in which researchers believe critical periods may be inappropriately accelerated or delayed. Retriggering a critical period might also help people learn more readily after childhood – acquiring a new language, developing musical abilities or recovering from stroke or brain injury, for example.

Interestingly, Hensch and colleagues found that the brain cells that switch on critical periods in the visual system (parvalbumin cells) don't actually make Otx2 themselves. Instead, Otx2 is sent by the retina. In essence, the eye is telling the brain, "The eyes are ready and seeing properly -- you can rewire now."

"The eye is telling the brain when to become plastic, rather than the brain developing on its own clock," says Hensch, who is also a professor at Harvard Medical School and at Harvard University's Department of Molecular & Cellular Biology. "The idea that this class of molecular messenger is passed from cell to cell is considered unorthodox in cell biology." This idea, however, has long been advocated by Dr. Alain Prochiantz of the Ecole Normale Superieure (Paris) and College de France, Hensch's collaborator and a coauthor on the study.

It was previously known that when parvalbumin cells mature, they set up inhibitory circuits in the cortex, balancing the existing excitatory circuits. Hensch and others have shown that setting up inhibitory circuits is key in launching critical periods. "Early excitatory input is important to make first contacts between neurons," Hensch explains. "But then, at the next stage, you need inhibition."

In the current study, Hensch and colleagues demonstrated that when mice are reared in the dark, thus getting no visual input, Otx2 remains in the retina. Only when the mice received full visual input did Otx2 begin to appear in the cortex, and only then did parvalbumin cells start to mature.

In other experiments, the researchers injected Otx2 directly into the cortex. The parvalbumin cells matured, even when the mice were kept in the dark. Finally, when Otx2 synthesis was blocked in the eye, parvalbumin cell functions failed to mature.

Otx2 has an unusual derivation: it is originally produced during embryonic development; without it, mice don't develop heads. Production then stops, but some days after birth, it reappears in parvalbumin cells. "The nervous system is recycling an embryonic factor to induce brain plasticity," says Hensch.

Hensch, who last fall won the highly competitive NIH Director's Pioneer Award, is also interested in the transport mechanism that propagates Otx2 from the retina to the cortex. He speculates that Otx2 itself could be a carrier for factors you'd want to deliver to the brain, envisioning eye drops for brain disorders such as schizophrenia, in which parvalbumin cells don't properly mature.

The study was funded by the Human Frontiers Science Program (Strasbourg), the Fondation pour La Recherche Medicale, and in part by RIKEN (Japan) and the Japanese Ministry of Science, Education and Technology (MEXT). Sayaka Sugiyama, PhD, was first author.


Story Source:

The above story is based on materials provided by Children's Hospital Boston. Note: Materials may be edited for content and length.


Cite This Page:

Children's Hospital Boston. "Trigger For Brain Plasticity Identified: Signal Comes, Surprisingly, From Outside The Brain." ScienceDaily. ScienceDaily, 9 August 2008. <www.sciencedaily.com/releases/2008/08/080807130818.htm>.
Children's Hospital Boston. (2008, August 9). Trigger For Brain Plasticity Identified: Signal Comes, Surprisingly, From Outside The Brain. ScienceDaily. Retrieved September 2, 2014 from www.sciencedaily.com/releases/2008/08/080807130818.htm
Children's Hospital Boston. "Trigger For Brain Plasticity Identified: Signal Comes, Surprisingly, From Outside The Brain." ScienceDaily. www.sciencedaily.com/releases/2008/08/080807130818.htm (accessed September 2, 2014).

Share This




More Mind & Brain News

Tuesday, September 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Can You Train Your Brain To Eat Healthy?

Can You Train Your Brain To Eat Healthy?

Newsy (Sep. 1, 2014) New research says if you condition yourself to eat healthy foods, eventually you'll crave them instead of junk food. Video provided by Newsy
Powered by NewsLook.com
Coffee Then Napping: The (New) Key To Alertness

Coffee Then Napping: The (New) Key To Alertness

Newsy (Aug. 30, 2014) Researchers say having a cup of coffee then taking a nap is more effective than a nap or coffee alone. Video provided by Newsy
Powered by NewsLook.com
Young Entrepreneurs Get $100,000, If They Quit School

Young Entrepreneurs Get $100,000, If They Quit School

AFP (Aug. 29, 2014) Twenty college-age students are getting 100,000 dollars from a Silicon Valley leader and a chance to live in San Francisco in order to work on the start-up project of their dreams, but they have to quit school first. Duration: 02:20 Video provided by AFP
Powered by NewsLook.com
Baby Babbling Might Lead To Faster Language Development

Baby Babbling Might Lead To Faster Language Development

Newsy (Aug. 29, 2014) A new study suggests babies develop language skills more quickly if their parents imitate the babies' sounds and expressions and talk to them often. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins