Featured Research

from universities, journals, and other organizations

Fingerprints Provide Clues To More Than Just Identity

Date:
August 8, 2008
Source:
Purdue University
Summary:
Fingerprints can reveal critical evidence, as well as an identity, with the use of a new technology that detects trace amounts of explosives, drugs or other materials left behind in the prints. The new technology also can distinguish between overlapping fingerprints left by different individuals -- a difficult task for current optical forensic methods.

This image shows two fingerprint images and a chemical composition graph obtained from a single analysis using new technology developed at Purdue. The fingerprint in the center shows an image created from an analysis of the presence of cocaine molecules. The fingerprint on the left is a computer-generated image created from the cocaine analysis for use in identification software. The right figure shows the mass spectrum acquired in one pixel.
Credit: Cooks Laboratory image/Demian Ifa

Fingerprints can reveal critical evidence, as well as an identity, with the use of a new technology developed at Purdue University that detects trace amounts of explosives, drugs or other materials left behind in the prints.

Related Articles


The new technology also can distinguish between overlapping fingerprints left by different individuals - a difficult task for current optical forensic methods.

A team led by R. Graham Cooks, Purdue's Henry Bohn Hass Distinguished Professor of Analytical Chemistry, has created a tool that reads and provides an image of a fingerprint's chemical signature. The technology can be used to determine what a person recently handled.

"The classic example of a fingerprint is an ink imprint showing the unique swirls and loops used for identification, but fingerprints also leave behind a unique distribution of molecular compounds," Cooks said. "Some of the residues left behind are from naturally occurring compounds in the skin and some are from other surfaces or materials a person has touched."

The team's research will be detailed in a paper published in August 8 issue of Science.

Demian R. Ifa, a Purdue postdoctoral researcher and the paper's lead author, said the technology also can easily uncover fingerprints buried beneath others.

"Because the distribution of compounds found in each fingerprint can be unique, we also can use this technology to pull one fingerprint out from beneath layers of other fingerprints," Ifa said. "By looking for compounds we know to be present in a certain fingerprint, we can separate it from the others and obtain a crystal clear image of that fingerprint. The image could then be used with fingerprint recognition software to identify an individual."

Researchers examined fingerprints in situ or lifted them from different surfaces such as glass, metal and plastic using common clear plastic tape. They then analyzed them with a mass spectrometry technique developed in Cooks' lab.

Mass spectrometry works by first turning molecules into ions, or electrically charged versions of themselves, so their masses can be analyzed. Conventional mass spectrometry requires chemical separations, manipulations of samples and containment in a vacuum chamber for ionization and analysis. Cooks' technology performs the ionization step in the air or directly on surfaces outside of the mass spectrometer's vacuum chamber, making the process much faster and more portable, Ifa said.

The Purdue procedure performs the ionization step by spraying a stream of water in the presence of an electric field to create positively charged water droplets. Water molecules in the droplets contain an extra proton and are called ions. When the charged water droplets hit the surface of the sample being tested, they transfer their extra proton to molecules in the sample, turning them into ions. The ionized molecules are then vacuumed into the mass spectrometer to be measured and analyzed.

Researchers placed a section of tape containing a lifted fingerprint on a moving stage in front of the spectrometer. The spectrometer then sprayed small sections of the sample with the charged water droplets, obtaining data for each section and combining the data sets to create an analysis of the sample as a whole, Ifa said. Software was used to map the information and create an image of the fingerprint from the distribution and intensity of selected ions.

Additional co-authors of the paper are Nicholas E. Manicke and Allison L. Dill, graduate students in Purdue's chemistry department.

The research was performed within Purdue's Center for Analytical Instrumentation Development located at the Bindley Biosciences Center in Purdue's Discovery Park.

Cooks' device, called desorption electrospray ionization or DESI, has been commercialized by Indianapolis-based Prosolia Inc., and the research was funded by Office of Naval Research and Prosolia Inc.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "Fingerprints Provide Clues To More Than Just Identity." ScienceDaily. ScienceDaily, 8 August 2008. <www.sciencedaily.com/releases/2008/08/080807144246.htm>.
Purdue University. (2008, August 8). Fingerprints Provide Clues To More Than Just Identity. ScienceDaily. Retrieved October 31, 2014 from www.sciencedaily.com/releases/2008/08/080807144246.htm
Purdue University. "Fingerprints Provide Clues To More Than Just Identity." ScienceDaily. www.sciencedaily.com/releases/2008/08/080807144246.htm (accessed October 31, 2014).

Share This



More Health & Medicine News

Friday, October 31, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Melafind: Spotting Melanoma Without a Biopsy

Melafind: Spotting Melanoma Without a Biopsy

Ivanhoe (Oct. 31, 2014) The MelaFind device is a pain-free way to check suspicious moles for melanoma, without the need for a biopsy. Video provided by Ivanhoe
Powered by NewsLook.com
Battling Multiple Myeloma

Battling Multiple Myeloma

Ivanhoe (Oct. 31, 2014) The answer isn’t always found in new drugs – repurposing an ‘old’ drug that could mean better multiple myeloma treatment, and hope. Video provided by Ivanhoe
Powered by NewsLook.com
Chronic Inflammation and Prostate Cancer

Chronic Inflammation and Prostate Cancer

Ivanhoe (Oct. 31, 2014) New information that is linking chronic inflammation in the prostate and prostate cancer, which may help doctors and patients prevent cancer in the future. Video provided by Ivanhoe
Powered by NewsLook.com
Sickle Cell: Stopping Kids’ Silent Strokes

Sickle Cell: Stopping Kids’ Silent Strokes

Ivanhoe (Oct. 31, 2014) Blood transfusions are proving crucial to young sickle cell patients by helping prevent strokes, even when there is no outward sign of brain injury. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins