Featured Research

from universities, journals, and other organizations

Light Touch: Controlling The Behavior Of Quantum Dots

Date:
August 24, 2008
Source:
National Institute of Standards and Technology
Summary:
Researchers from NIST and the Joint Quantum Institute have reported a new way to fine-tune the light coming from quantum dots by manipulating them with pairs of lasers. Their technique could significantly improve quantum dots as a source of pairs of entangled photons for applications in quantum information technologies.

Top: Cross-section scanning tunneling microscope (STM) image shows indium arsenide quantum dot regions embedded in gallium arsenide. Each 'dot' is approximately 30 nanometers long–faint lines are individual rows of atoms. (Color added for clarity.) Bottom: Schematic of NIST-JQI experimental set up. Orienting the resonant laser at a right angle to the quantum dot light minimizes scattering
Credit: Top: J.R. Tucker; Bottom: Solomon/NIST

Researchers from the National Institute of Standards and Technology (NIST) and the Joint Quantum Institute (JQI), a collaborative center of the University of Maryland and NIST, have reported a new way to fine-tune the light coming from quantum dots by manipulating them with pairs of lasers.

Their technique, published in Physical Review Letters,* could significantly improve quantum dots as a source of pairs of “entangled” photons, a property with important applications in quantum information technologies. The accomplishment could accelerate development of powerful advanced cryptography applications, projected to be a key 21st-century technology.

Entangled photons are a peculiar consequence of quantum mechanics. Tricky to generate, they remain interconnected even when separated by large distances. Merely observing one instantaneously affects the properties of the other. The entanglement can be used in quantum communication to pass an encryption key that is by its nature completely secure, as any attempt to eavesdrop or intercept the key would be instantly detected. One goal of the NIST-JQI team is to develop quantum dots as a convenient source of entangled photons.

Quantum dots are nanoscale regions of a semiconductor material similar to the material in computer processors but with special properties due to their tiny dimensions. Though they can be composed of tens of thousands of atoms, quantum dots in many ways behave almost as if they were single atoms. Unfortunately, almost is not good enough when it comes to the fragile world of quantum cryptography and next-generation information technologies. When energized, a quantum dot emits photons, or “particles” of light, just as a solitary atom does. But imperfections in the shape of a quantum dot cause what should be overlapping energy levels to separate. This ruins the delicate balance of the ideal state required to emit entangled photons.

To overcome this problem, the NIST-JQI team uses lasers to precisely control the energy levels of quantum dots, just as physicists have been doing with actual single atoms since the mid-1970s and, much more recently, with the artificial quantum dot variety. With their customized set-up, which includes two lasers—one shining from above the quantum dot and the other illuminating it from the side—the researchers were able to manipulate energy states in a quantum dot and directly measure its emissions. By adjusting the intensity of the laser beams, they were able to correct for imperfection-caused variations and generate more ideal signals. In so doing, the team was the first to demonstrate that laser-tuned quantum dots can efficiently generate photons one at a time, as required for quantum cryptography and other applications.

While the device currently still requires quite cold temperatures and sits in a liquid helium bath, it is compact enough to fit in the palm of your hand—an elegant setup that could be eventually implemented in quantum cryptography applications.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology. Note: Materials may be edited for content and length.


Journal Reference:

  1. A. Muller, W. Fang, J. Lawall and G.S. Solomon. Emission Spectrum of a Dressed Exciton-Biexciton Complex in a Semiconductor Quantum Dot. Physical Review Letters, 2008; 101 (2): 027401 DOI: 10.1103/PhysRevLett.101.027401

Cite This Page:

National Institute of Standards and Technology. "Light Touch: Controlling The Behavior Of Quantum Dots." ScienceDaily. ScienceDaily, 24 August 2008. <www.sciencedaily.com/releases/2008/08/080819170439.htm>.
National Institute of Standards and Technology. (2008, August 24). Light Touch: Controlling The Behavior Of Quantum Dots. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2008/08/080819170439.htm
National Institute of Standards and Technology. "Light Touch: Controlling The Behavior Of Quantum Dots." ScienceDaily. www.sciencedaily.com/releases/2008/08/080819170439.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) — The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) — British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) — Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) — The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins