Featured Research

from universities, journals, and other organizations

Newly Uncovered Cells May Be Critical In Psoriasis

Date:
August 25, 2008
Source:
Rockefeller University
Summary:
Psoriasis, one of humanity's oldest known diseases, has also been one of its most misunderstood. But in a new study that could change researchers' perspective of the skin disorder and potentially lead to powerful new drug targets, scientists have found that the source of psoriasis may be a single population of inflammatory cells that act as instigators by priming the body's immune system for self-attack.

Getting under the skin: In the skin of psoriasis patients, most of the dendritic cells are inflammatory (red), as opposed to resident dendritic cells (yellow) that are also found in healthy skin.
Credit: Image courtesy of Rockefeller University

Psoriasis, one of humanity’s oldest known diseases, has also been one of its most misunderstood. But in a new study that could change researchers’ perspective of the skin disorder and potentially lead to powerful new drug targets, Rockefeller University scientists have found that the source of psoriasis may be a single population of inflammatory cells that act as instigators by priming the body’s immune system for self-attack.

Immunity-directing dendritic cells were discovered at Rockefeller in 1973 and, in the years since, researchers have discovered that the cells exist in multiple forms, with different populations residing throughout the body. Discerning the intricacies of each has proven a tricky business.

But when it comes to dendritic cell populations in the skin, Michelle Lowes — assistant professor of clinical investigation in James Krueger’s Laboratory for Investigative Dermatology — and her colleagues have been chipping away at and describing them one by one. Prior work by the researchers had characterized the populations of cells in healthy skin. By comparing those results with skin from psoriasis patients, Lowes, Krueger and their collaborators have found that psoriasis lesions are characterized by a distinctly different composition of dendritic-cell populations: Not only do they have the dendritic cells found in normal skin, but they also have an overabundance of a new variety of “inflammatory dendritic cells” that produce immune-stimulating proteins called cytokines.

In order to see how this new population of cells interact with other immune cells, the researchers first isolated them and then threw them together with T cells. Typically, dendritic cells direct the response of T cells, presenting them with foreign molecules that teach them what to seek and attack. The inflammatory dendritic cells were no different — they triggered activation of the T cells, which promptly began producing more cytokines and other inflammatory proteins. “These cytokines may be important for inducing the psoriasis lesions to develop, or amplifying them,” Lowes says.

The cytokines, and the inflammatory dendritic cells that produce them, all represent possible avenues of exploration for drug designers. Lowes believes that the inflammatory dendritic cells are being called into the skin and may be an ideal target, as they’re a discrete population that doesn’t appear to be required for normal immune activity. “If you could knock them out specifically, you might be able to just treat psoriasis without the unwanted side effects of more general immune suppression,” she says. “And I think that if we could stop the cells from getting into the skin, you may even be able to prevent psoriasis.”

The work could also extend to other autoimmune diseases. “The idea of resident versus inflammatory dendritic cell populations provides a useful model,” she says. “I’m hoping that other investigators will find this model helpful as they look at dendritic cells in different diseases and different organs.” If the cells can be recreated in the lab, they could potentially be used in therapies to boost immunity and increase inflammatory responses against diseases such as cancer.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Zaba et al. Psoriasis Is Characterized by Accumulation of Immunostimulatory and Th1/Th17 Cell-Polarizing Myeloid Dendritic Cells. Journal of Investigative Dermatology, 2008; DOI: 10.1038/jid.2008.194

Cite This Page:

Rockefeller University. "Newly Uncovered Cells May Be Critical In Psoriasis." ScienceDaily. ScienceDaily, 25 August 2008. <www.sciencedaily.com/releases/2008/08/080825094555.htm>.
Rockefeller University. (2008, August 25). Newly Uncovered Cells May Be Critical In Psoriasis. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2008/08/080825094555.htm
Rockefeller University. "Newly Uncovered Cells May Be Critical In Psoriasis." ScienceDaily. www.sciencedaily.com/releases/2008/08/080825094555.htm (accessed October 1, 2014).

Share This



More Health & Medicine News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Some Positive Ebola News: Outbreak 'Contained' In Nigeria

Some Positive Ebola News: Outbreak 'Contained' In Nigeria

Newsy (Sep. 30, 2014) The CDC says a new case of Ebola has not been reported in Nigeria for more than 21 days, leading to hopes the outbreak might be nearing its end. Video provided by Newsy
Powered by NewsLook.com
UN Ebola Mission Head: Immediate Action Is Crucial

UN Ebola Mission Head: Immediate Action Is Crucial

AFP (Sep. 30, 2014) The newly appointed head of the United Nations Mission for Ebola Emergency Response (UNMEER), Anthony Banbury, outlines operations to tackle the virus. Duration: 00:39 Video provided by AFP
Powered by NewsLook.com
CDC Confirms First Case of Ebola in US

CDC Confirms First Case of Ebola in US

AP (Sep. 30, 2014) The CDC has confirmed the first diagnosed case of Ebola in the United States. The patient is being treated at a Dallas hospital after traveling earlier this month from Liberia. (Sept. 30) Video provided by AP
Powered by NewsLook.com
New Breast Cancer Drug Extends Lives In Clinical Trial

New Breast Cancer Drug Extends Lives In Clinical Trial

Newsy (Sep. 30, 2014) In a clinical trial, breast cancer patients lived an average of 15 months longer when they received new drug Perjeta along with Herceptin. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins