Featured Research

from universities, journals, and other organizations

Better Understanding Of Blood Vessel Constrictor Needed To Harness Its Power For Patients

Date:
September 26, 2008
Source:
Medical College of Georgia
Summary:
To harness endothelin-1's power to constrict blood vessels and help patients manage high blood pressure or heart failure, scientists must learn more about how endothelin functions naturally and in disease states, says a Medical College of Georgia researcher.

To harness endothelin-1's power to constrict blood vessels and help patients manage high blood pressure or heart failure, scientists must learn more about how endothelin functions naturally and in disease states, says a Medical College of Georgia researcher.
Credit: Image courtesy of Medical College of Georgia

To harness endothelin-1's power to constrict blood vessels and help patients manage high blood pressure or heart failure, scientists must learn more about how endothelin functions naturally and in disease states, says a Medical College of Georgia researcher.

Related Articles


Despite strong laboratory evidence that blocking endothelin-1 receptors would be an effective, targeted therapy for these two major health problems, the drugs failed patients, says Dr. Adviye Ergul, physiologist in the MCG Schools of Medicine and Graduate Studies.

"These endothelin-1 receptors are logical targets for drugs to treat hypertension because of their key role in vasoconstriction, but the targets are moving and we don't know how one target plays off another," says Dr. Ergul, who discussed novel aspects of endothelin receptor interaction during the 62nd High Blood Pressure Research Conference and Workshop in Atlanta.

"The current thinking in pharmacology is one hormone, one receptor equals boom: the effect. I think cells are much smarter," she says. This week, Dr. Ergul challenged colleagues across the country to consider emerging evidence that usual receptor communication is likely more complex than they thought and that disease may significantly alter communication.

Endothelin-1 receptors are known to interact: one way blood vessels keep a healthy tone, for example, is that a and b receptors on smooth muscle cells prompt constriction while b receptors on the lining of blood vessels work with nitric oxide to promote relaxation. Endothelin-1 receptors on the kidneys are a player as well, helping wring out excess water and salt. "There is a delicate balance," says Dr. Ergul.

But there's apparently more to the relationships. She holds up a handful of recent journal articles which reflect mounting evidence that receptors actively work as teams of two or more. That teamwork could change their function. New technology enables scientists to literally watch receptors move closer together on a cell surface, clearly indicating that something is going on.

"Numerous drugs have been developed that are antagonists that can block these receptors with the idea they can be used in hypertension and heart failure. In animal models, they worked well," she says. But in clinical trials they failed badly; a drug for heart failure actually worsened problems such as labored breathing and swelling in patients already having difficulty moving blood through their body.

The first antagonists blocked both known receptors: a and b; the next generation blocked one or the other but still didn't work. A notable exception is endothelin-1 antagonists that reduce excessive pressure and tissue buildup inside the blood vessels of patients with pulmonary hypertension. In addition to constricting blood vessels, endothelin-1 can help blood vessels grow bigger but too much can result in protein deposits that stiffen blood vessel walls. 

Scientists have been scratching their heads over why blocking these receptors hasn't panned out; they've even looked for an "atypical" receptor that might explain it. But Dr. Ergul, an expert on endothelin-1's role in diabetes, believes the unexpected results are better explained by poorly understood relationships in normal and disease states. "How receptors dimerize, how they get closer together on the cell surface, likely needs to affect our drug design," she says.


Story Source:

The above story is based on materials provided by Medical College of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

Medical College of Georgia. "Better Understanding Of Blood Vessel Constrictor Needed To Harness Its Power For Patients." ScienceDaily. ScienceDaily, 26 September 2008. <www.sciencedaily.com/releases/2008/09/080918104225.htm>.
Medical College of Georgia. (2008, September 26). Better Understanding Of Blood Vessel Constrictor Needed To Harness Its Power For Patients. ScienceDaily. Retrieved October 26, 2014 from www.sciencedaily.com/releases/2008/09/080918104225.htm
Medical College of Georgia. "Better Understanding Of Blood Vessel Constrictor Needed To Harness Its Power For Patients." ScienceDaily. www.sciencedaily.com/releases/2008/09/080918104225.htm (accessed October 26, 2014).

Share This



More Health & Medicine News

Sunday, October 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Texas Nurse Nina Pham Cured of Ebola

Texas Nurse Nina Pham Cured of Ebola

AFP (Oct. 25, 2014) — An American nurse who contracted Ebola while caring for a Liberian patient in Texas has been declared free of the virus and will leave the hospital. Duration: 01:01 Video provided by AFP
Powered by NewsLook.com
Toxin-Packed Stem Cells Used To Kill Cancer

Toxin-Packed Stem Cells Used To Kill Cancer

Newsy (Oct. 25, 2014) — A Harvard University Research Team created genetically engineered stem cells that are able to kill cancer cells, while leaving other cells unharmed. Video provided by Newsy
Powered by NewsLook.com
IKEA Desk Converts From Standing to Sitting With One Button

IKEA Desk Converts From Standing to Sitting With One Button

Buzz60 (Oct. 24, 2014) — IKEA is out with a new convertible desk that can convert from a sitting desk to a standing one with just the push of a button. Jen Markham explains. Video provided by Buzz60
Powered by NewsLook.com
Ebola Protective Suits Being Made in China

Ebola Protective Suits Being Made in China

AFP (Oct. 24, 2014) — A factory in China is busy making Ebola protective suits for healthcare workers and others fighting the spread of the virus. Duration: 00:38 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins