Featured Research

from universities, journals, and other organizations

Method Of Predicting Clear Air Turbulence Could Make Flights Smoother In The Future

Date:
October 9, 2008
Source:
University of Georgia
Summary:
A new method of forecasting clear air turbulence will be published this week in the Journal of Atmospheric Sciences. The research, led by a scientist at the University of Georgia, could help pilots chart new courses around these patches of rough but clear air that can turn an otherwise unremarkable flight into a nightmare.

A new forecasting method could help pilots chart new courses around patches of rough but clear air that can turn an otherwise unremarkable flight into a nightmare.
Credit: iStockphoto/David Joyner

It comes blasting out of the blue on your airplane flight: sudden bumpiness and sometimes even a violent plummeting. It arrives without warning, and it can be more than frightening, since it causes tens of millions of dollars in injury claims every year.

It's called clear air turbulence (CAT), and a new forecasting method, published in the Journal of Atmospheric Sciences and led by a researcher at the University of Georgia, could help pilots chart new courses around these patches of rough but clear air that can turn an otherwise unremarkable flight into a nightmare.

"Our new method allows superior forecasts for CAT beyond the tools that have been in use," said John Knox, an assistant professor in the department of geography in UGA's Franklin College of Arts and Sciences. "Commercial aircraft encounter severe-or-greater turbulence about 5,000 times each year, and the majority of these occur 10,000 feet above the Earth's surface. This new method gives pilots a way to avoid turbulence that's not associated with nearby thunderstorms or significant cloudiness."

Other authors on the paper include Donald McCann of McCann Aviation Weather Research, Inc., of Overland Park, Kan., and Paul Williams of the department of meteorology at the University of Reading in Great Britain.

The new method predicts energy associated with gravity waves—phenomena in the atmosphere that look like ocean waves but which can occur in clear air. They can be created by air flow over mountains, frontal boundaries or other causes. The type of gravity wave that Knox and his colleagues identified as a possible source of bumpiness comes from a different source. These waves are spontaneously generated and associated with jet streams at high altitudes, near cruising levels for airplanes.

When a plane flies through them, the sensation is like being in a small boat on a stormy sea. But where a boat's skipper can see rough sea, gravity waves in the air are usually invisible, and pilots often don't know they're present until they're flying right into them.

Predicting turbulence caused by nearby storms or low pressure systems is much easier than knowing when CAT might hit, said Knox. Still, several hundred significant injuries occur in the U.S. because of clear air turbulence, and because it occurs in the absence of obvious weather, wary passengers tend to wonder if they are in danger.

There are predictive models in use now, and an improved version of the Graphical Turbulence Guidance (GTG) algorithm, currently the best CAT forecasting method, will soon be online for airline pilots, said Knox. But he noted that even the GTG doesn't have some of the desirable features of the method just published in the Journal of Atmospheric Sciences.

The new method is based on something called the Lighthill-Ford theory of spontaneous imbalance, developed by a British theoretician in the early 1990s. Knox and his colleagues spent several years turning this theory into a forecast tool.

The team first simplified the theory then developed an algorithm to use the theory to make predictions of turbulence. The algorithm was next tested on five months' worth of high-resolution weather forecast model output from 2005-2006. The researchers then compared the algorithm's prediction of turbulence to actual pilot observations of it. The results of this statistical analysis demonstrated that the team's method performed better than the best methods of CAT forecasting available during that period, said Knox.

"Essentially what we have is a mathematical model that translates the theory into numbers that describe the gravity waves," said Knox. "These numbers can then drive an algorithm that gives you a forecast of the kinetic energy associated with turbulence."

The researchers hypothesize that a clear sequence of events occurs to create CAT and understanding that sequence is crucial to predicting the location of the turbulence.

"Gravity waves act upon the environment and then destabilize it," said Knox. "Even weak gravity waves may initiate turbulence."

One problem with current CAT-forecasting models is that they are "at least partly empirical," said Knox. "Current methods often rely on rules-of-thumb based on pilot experience that aren't always grounded in rigorous theory." The new method is based "on a single, consistent theory of spontaneous imbalance," and thus should at least theoretically be more reliable, Knox said.

He added that adoption of the new method could potentially create "major improvements in CAT forecasting." Thousands of passengers who are fearful of "things that go bump in the flight" hope he's correct.


Story Source:

The above story is based on materials provided by University of Georgia. Note: Materials may be edited for content and length.


Cite This Page:

University of Georgia. "Method Of Predicting Clear Air Turbulence Could Make Flights Smoother In The Future." ScienceDaily. ScienceDaily, 9 October 2008. <www.sciencedaily.com/releases/2008/10/081001093239.htm>.
University of Georgia. (2008, October 9). Method Of Predicting Clear Air Turbulence Could Make Flights Smoother In The Future. ScienceDaily. Retrieved August 1, 2014 from www.sciencedaily.com/releases/2008/10/081001093239.htm
University of Georgia. "Method Of Predicting Clear Air Turbulence Could Make Flights Smoother In The Future." ScienceDaily. www.sciencedaily.com/releases/2008/10/081001093239.htm (accessed August 1, 2014).

Share This




More Matter & Energy News

Friday, August 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins