Featured Research

from universities, journals, and other organizations

New Material Could Act As Nanofridge For Microchips In Smaller And Faster Computers

Date:
October 9, 2008
Source:
Universitat Autonoma de Barcelona
Summary:
Researchers in Spain have developed a material which could act as a nanofridge for computers, thus eliminating the barrier posed by overheating in ever smaller chips. The material is based on germanium nanostructures, presents a significant reduction in thermal conductivity and therefore could be a potential candidate in the development of thermoelectric systems compatible with silicon.

Researchers in Spain have developed a material which could act as a nanofridge for computers, thus eliminating the barrier posed by overheating in ever smaller chips. The material is based on germanium nanostructures, presents a significant reduction in thermal conductivity and therefore could be a potential candidate in the development of thermoelectric systems compatible with silicon.

In the past few years, the design and manufacturing of circuits at nanoscopic scale for integrated devices has become one of the frontier fields in new material science and technology. The significant reduction achieved in these devices often is accompanied by new discoveries in how they behave precisely when the systems are of extremely small dimensions. Understanding this new physics at nanoscopic scale at the same time has enabled researchers to study the possibility of designing new materials with innovative characteristics.

One of the most crucial properties to take into account when designing chips is the thermal conductivity of the devices integrated in the chip, i.e. their capacity to remove or accumulate energy. This property is essential to control the heating of micro-sized circuits, which represents one of the current physical limitations to computing potential. Combining heat and electricity creates thermoelectric effects which would allow circuits to cool down and would increase the power of computing.

Until now, no material has contained the properties needed to be efficient enough in terms of thermoelectric behaviour. This is why obtaining materials at nanometric scale can be useful for the improvement of thermoelectric properties, since these materials can achieve a significant reduction in thermal conductivity as well as maintain a high level of electrical conductivity, which is needed to obtain high thermoelectric efficiency.

In this project, researchers of the UAB Department of Physics and the Barcelona Institute of Materials Science (ICMAB-CSIC) have worked together to develop a new material based on supernets formed with two alternative layers, one made of silicon (Si) and the other of germanium (Ge) nanocrystals (quantum dots). In comparison to previous improvements, this project proposes to place the quantum dots in an uncorrelated fashion on consecutive layers. In other words, the dots on one layer would not be vertically aligned with those of the lower layer. This is achieved by introducing a small sub-layer of carbon between each layer of silicon and Ge nanodots, which hides the information of the quantum dots found on the lower levels.

The main result of the uncorrelation between consecutive layers is the reduction in thermal conductivity, since it becomes more difficult to transport heat perpendicularly from the multilayers. Researchers were able to prove that this reduction reached a factor in excess of 2 when compared to structures with a vertical correlation of dots. This could greatly influence the design of new materials with improved thermoelectric characteristics and pave the way for the creation of nanofridges for common semiconductor devices, given that the structure is compatible with silicon technology.

Ge-based structures also could be used in high-temperature applications, such as in recovering heat generated in combustion processes and converting it to electrical energy.

A second and important aspect of this project is the theoretic study of the thermal properties this new material contains through a simple model based on the modification of the Fourier heat equation, which can predict its behaviour according to the dimensions of its characteristics. Thus with the help of results from previous studies, researchers were able to understand the theoretical foundations of thermal behaviour of this nanostructured material.

The research was coordinated by Javier Rodrνguez, professor at the UAB Department of Physics, with the participation of Jaime Alvarez, Xavier Alvarez and David Jou, also from the UAB Department of Physics, as well as the collaboration of CSIC researchers Paul Lacharmoise, Alessandro Bernardi, Isabel Alonso, and ICREA researcher Alejandro Goρi. Part of the research was carried out at the Nanotechnology Lab of the MATGAS research centre located at the UAB Research Park. The research paper was recently published in Applied Physics Letters and research members are now working to develop a material with a good level of electric conductivity through controlled doping of the structure.


Story Source:

The above story is based on materials provided by Universitat Autonoma de Barcelona. Note: Materials may be edited for content and length.


Cite This Page:

Universitat Autonoma de Barcelona. "New Material Could Act As Nanofridge For Microchips In Smaller And Faster Computers." ScienceDaily. ScienceDaily, 9 October 2008. <www.sciencedaily.com/releases/2008/10/081008095716.htm>.
Universitat Autonoma de Barcelona. (2008, October 9). New Material Could Act As Nanofridge For Microchips In Smaller And Faster Computers. ScienceDaily. Retrieved October 21, 2014 from www.sciencedaily.com/releases/2008/10/081008095716.htm
Universitat Autonoma de Barcelona. "New Material Could Act As Nanofridge For Microchips In Smaller And Faster Computers." ScienceDaily. www.sciencedaily.com/releases/2008/10/081008095716.htm (accessed October 21, 2014).

Share This



More Matter & Energy News

Tuesday, October 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Graphene Paint Offers Rust-Free Future

Graphene Paint Offers Rust-Free Future

Reuters - Innovations Video Online (Oct. 21, 2014) — British scientists have developed a prototype graphene paint that can make coatings which are resistant to liquids, gases, and chemicals. The team says the paint could have a variety of uses, from stopping ships rusting to keeping food fresher for longer. Jim Drury reports. Video provided by Reuters
Powered by NewsLook.com
Gulfstream G500, G600 Unveiling

Gulfstream G500, G600 Unveiling

Flying (Oct. 20, 2014) — Watch Gulfstream's public launch of the G500 and G600 at their headquarters in Savannah, Ga., along with a surprise unveiling of the G500, which taxied up under its own power. Video provided by Flying
Powered by NewsLook.com
Japanese Scientists Unveil Floating 3D Projection

Japanese Scientists Unveil Floating 3D Projection

Reuters - Innovations Video Online (Oct. 20, 2014) — Scientists in Tokyo have demonstrated what they say is the world's first 3D projection that floats in mid air. A laser that fires a pulse up to a thousand times a second superheats molecules in the air, creating a spark which can be guided to certain points in the air to shape what the human eye perceives as an image. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-Fuel Impala

3BL Media (Oct. 20, 2014) — Hey, Doc! Sewage, Beer and Food Scraps Can Power Chevrolet’s Bi-fuel Impala Video provided by 3BL
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins