Featured Research

from universities, journals, and other organizations

Neural Probe Developed That Will Limit Damage To Cells And Biological Tissue

Date:
October 23, 2008
Source:
University of Arkansas, Fayetteville
Summary:
Engineering researchers have just developed a neural probe that demonstrates significantly greater electrical charge storage capacity than all other neural prosthetic devices to date. More charge storage capacity means the device can stimulate nerves and tissues with less damage and sense neural signals with better sensitivity.

Neural probes with nanowire electrodes.
Credit: Image courtesy of University of Arkansas, Fayetteville

Engineering researchers at the University of Arkansas have developed a neural probe that demonstrates significantly greater electrical charge storage capacity than all other neural prosthetic devices. More charge storage capacity means the device can stimulate nerves and tissues with less damage and sense neural signals with better sensitivity.

Findings of the project were published in Nanotechnology 2008 and will be included in an upcoming issue of IEEE Transactions on Biomedical Engineering.

The neural probe, made of gold and iridium oxide nanowires grown vertically on a polymer or titanium substrate, will improve the function and reliability of neural prosthetic devices. It has also displayed superior biocompatibility and mechanical strength compared to similar silicon structures.

“Our goal is to develop functional systems that can simultaneously stimulate nerves or muscle cells and record physiological changes in the human body,” said Hargsoon Yoon, research assistant professor in the College of Engineering and lead researcher on the project. “Our approach can minimize cell damage and even provide higher electrode efficiency than commonly used electrodes.”

Needle probes are used as neural prostheses to help improve quality of life for patients with severe impairments. Current clinical applications of neural prosthetics include cochlear and retinal implants, cardiac pacing and defibrillation, restoration of urinary bladder function, functional electrical stimulation in paralyzed individuals and deep brain stimulation for people with Parkinson’s disease and Tourette syndrome.

The research team, based at the university’s Center for Wireless Nano-, Bio- and Info-Tech Sensor and Systems, developed probes that integrate free-standing, “hetero-structured” nanowires. Hetero-structured means the nanowires have an inner core and outer layer. Made of gold, the inner-core nanowires were grown vertically on titanium and polymer substrates. The outer, functional layer, made of iridium oxide, provides charge storage capacity for neural signal sensing and stimulation.

Researchers repeatedly demonstrated an electrical storage capacity of 48.6 Coulombs per square centimeter. Units of electrical charge are measured in Coulombs. Working with different materials, other major research groups, including teams at Stanford University and University of Southern California, have developed probes with less than half the storage capacity of the University of Arkansas probe.

Because storage capacity is directly related to density of electrical current needed to stimulate nerves and muscle cells, the probe can transfer charge into biological cells and tissues using less voltage – and less battery power – and thus can operate longer with less tissue and cell damage.

“Electrodes with low-charge storage capacity require higher stimulating voltage levels,” Yoon said. “It is this higher voltage that can damage biological tissues and the electrode itself.”

Yoon collaborates with Vijay Varadan, distinguished professor of electrical engineering and director of the university’s High Density Electronics Center, to develop a system that will include nanowire electrodes, wireless communication and a power source for bio-packaging. The wireless network will facilitate closed-loop dynamic adjustments of the system and continuous monitoring of patients during stimulation.

Varadan holds the College of Engineering’s Twenty-First Century Endowed Chair in Nano- and Bio-Technologies and Medicine and the college’s Chair in Microelectronics and High Density Electronics. In addition to his position as director of the above center, he directs the university’s High Density Electronics Center. Varadan is also a professor of neurosurgery in the College of Medicine at the University of Arkansas for Medical Sciences in Little Rock, Ark.


Story Source:

The above story is based on materials provided by University of Arkansas, Fayetteville. Note: Materials may be edited for content and length.


Cite This Page:

University of Arkansas, Fayetteville. "Neural Probe Developed That Will Limit Damage To Cells And Biological Tissue." ScienceDaily. ScienceDaily, 23 October 2008. <www.sciencedaily.com/releases/2008/10/081015164334.htm>.
University of Arkansas, Fayetteville. (2008, October 23). Neural Probe Developed That Will Limit Damage To Cells And Biological Tissue. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2008/10/081015164334.htm
University of Arkansas, Fayetteville. "Neural Probe Developed That Will Limit Damage To Cells And Biological Tissue." ScienceDaily. www.sciencedaily.com/releases/2008/10/081015164334.htm (accessed October 23, 2014).

Share This



More Matter & Energy News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Chameleon Camouflage to Give Tanks Cloaking Capabilities

Reuters - Innovations Video Online (Oct. 22, 2014) — Inspired by the way a chameleon changes its colour to disguise itself; scientists in Poland want to replace traditional camouflage paint with thousands of electrochromic plates that will continuously change colour to blend with its surroundings. The first PL-01 concept tank prototype will be tested within a few years, with scientists predicting that a similar technology could even be woven into the fabric of a soldiers' clothing making them virtually invisible to the naked eye. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Jet Sales Lift Boeing Profit 18 Pct.

Jet Sales Lift Boeing Profit 18 Pct.

Reuters - Business Video Online (Oct. 22, 2014) — Strong jet demand has pushed Boeing to raise its profit forecast for the third time, but analysts were disappointed by its small cash flow. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
Internet of Things Aims to Smarten Your Life

Internet of Things Aims to Smarten Your Life

AP (Oct. 22, 2014) — As more and more Bluetooth-enabled devices are reaching consumers, developers are busy connecting them together as part of the Internet of Things. (Oct. 22) Video provided by AP
Powered by NewsLook.com
What Is Magic Leap, And Why Is It Worth $500M?

What Is Magic Leap, And Why Is It Worth $500M?

Newsy (Oct. 22, 2014) — Magic Leap isn't publicizing much more than a description of its product, but it’s been enough for Google and others to invest more than $500M. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins