Featured Research

from universities, journals, and other organizations

First Gamma-ray-only Pulsar Observation Opens New Window On Stellar Evolution

Date:
October 17, 2008
Source:
NASA
Summary:
About three times a second, a 10,000-year-old stellar corpse sweeps a beam of gamma-rays toward Earth. This object, known as a pulsar, is the first one known to "blink" only in gamma rays, and was discovered by the Large Area Telescope onboard NASA's Fermi Gamma-ray Space Telescope.

NASA's Fermi Gamma-ray Space Telescope discovered the first pulsar that beams only in gamma rays. The pulsar (illustrated, inset) lies in the CTA 1 supernova remnant in Cepheus.
Credit: NASA/S. Pineault, DRAO

About three times a second, a 10,000-year-old stellar corpse sweeps a beam of gamma-rays toward Earth. This object, known as a pulsar, is the first one known to "blink" only in gamma rays, and was discovered by the Large Area Telescope (LAT) onboard NASA's Fermi Gamma-ray Space Telescope, a collaboration with the U.S. Department of Energy (DOE) and international partners.

"This is the first example of a new class of pulsars that will give us fundamental insights into how stars work," says Stanford University's Peter Michelson, principal investigator for the LAT. The LAT data is processed by the DOE's Stanford Linear Accelerator Center and analyzed by the International LAT Collaboration.

The gamma-ray-only pulsar lies within a supernova remnant known as CTA 1, which is located about 4,600 light-years away in the constellation Cepheus. Its lighthouse-like beam sweeps Earth's way every 316.86 milliseconds and emits 1,000 times the energy of our sun. These results appear in the Oct. 16 edition of Science Express.

A pulsar is a rapidly spinning neutron star, the crushed core left behind when a massive sun explodes. Astronomers have cataloged nearly 1,800 pulsars. Although most were found through their pulses at radio wavelengths, some of these objects also beam energy in other forms, including visible light and X-rays.

Unlike previously discovered pulsars, the source in CTA 1 appears to blink only in gamma-ray energies, offering researchers a new way to study the stars in our universe. Scientists think CTA 1 is only the first of a large population of similar objects. "The LAT provides us with a unique probe of the galaxy's pulsar population, revealing objects we would not otherwise even know exist," says Fermi Gamma-ray Space Telescope Project Scientist Steve Ritz, at NASA's Goddard Space Flight Center in Greenbelt, Md.

The pulsar in CTA 1 is not located at the center of the remnant's expanding gaseous shell. Supernova explosions can be asymmetrical, often imparting a "kick" that sends the neutron star careening through space. Based on the remnant's age and the pulsar's distance from its center, astronomers believe the neutron star is moving at about a million miles per hour--a typical speed.

The LAT scans the entire sky every 3 hours and detects photons with energies ranging from 20 million to over 300 billion times the energy of visible light. The instrument sees about one gamma ray each minute from CTA 1. That's enough for scientists to piece together the neutron star's pulsing behavior, its rotation period, and the rate at which it's slowing down.

A pulsar's beams arise because neutron stars possess intense magnetic fields and rotate rapidly. Charged particles stream outward from the star's magnetic poles at nearly the speed of light to create the gamma-ray beams the telescope sees. Because the beams are powered by the neutron star's rotation, they gradually slow the pulsar's spin. In the case of CTA 1, the rotation period is increasing by about one second every 87,000 years.

This measurement is also vital to understanding the dynamics of the pulsar's behavior and can be used to estimate the pulsar's age. From the slowing period, researchers have determined that the pulsar is actually powering all the activity in the nebula where it resides.

"This observation shows the power of the LAT," Michelson says. "It is so sensitive that we can now discover new types of objects just by observing their gamma-ray emissions."

NASA's Fermi Gamma-ray Space Telescope is an astrophysics and particle physics partnership, developed in collaboration with the U.S. Department of Energy, along with important contributions from academic institutions and partners in France, Germany, Italy, Japan, Sweden and the United States.


Story Source:

The above story is based on materials provided by NASA. Note: Materials may be edited for content and length.


Cite This Page:

NASA. "First Gamma-ray-only Pulsar Observation Opens New Window On Stellar Evolution." ScienceDaily. ScienceDaily, 17 October 2008. <www.sciencedaily.com/releases/2008/10/081016141421.htm>.
NASA. (2008, October 17). First Gamma-ray-only Pulsar Observation Opens New Window On Stellar Evolution. ScienceDaily. Retrieved September 21, 2014 from www.sciencedaily.com/releases/2008/10/081016141421.htm
NASA. "First Gamma-ray-only Pulsar Observation Opens New Window On Stellar Evolution." ScienceDaily. www.sciencedaily.com/releases/2008/10/081016141421.htm (accessed September 21, 2014).

Share This



More Space & Time News

Sunday, September 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

SpaceX Cargo Ship Blasts Off Toward Space Station

SpaceX Cargo Ship Blasts Off Toward Space Station

AFP (Sep. 21, 2014) SpaceX's unmanned Dragon cargo ship blasts off toward the International Space Station, carrying a load of supplies and science experiments for the astronauts living there. Duration: 00:35 Video provided by AFP
Powered by NewsLook.com
NASA's MAVEN To Study Martian Atmosphere

NASA's MAVEN To Study Martian Atmosphere

Newsy (Sep. 21, 2014) NASA's Maven will soon give information that could explain what happened to Mars' atmosphere. Video provided by Newsy
Powered by NewsLook.com
3-D Printing Enters The Final Frontier

3-D Printing Enters The Final Frontier

Newsy (Sep. 21, 2014) NASA sent a 3-D printer to the International Space Station, bringing manufacturing to space for the first time. Video provided by Newsy
Powered by NewsLook.com
MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins