Featured Research

from universities, journals, and other organizations

Science Of Speed: Building The Fastest Car In The World

Date:
October 24, 2008
Source:
National Physical Laboratory
Summary:
When Andy Green puts his foot on the accelerator and tries to break the land speed record in 2011, he can be sure that some of the UK's top scientists have done everything possible to make sure he achieves his goal, and is safe in the process.

Computer-generated image of the BLOODHOUND SSC (super sonic car). If the vehicle achieves its target of 1,000mph (Mach 1.4), it will mark the greatest incremental increase in the history of the World Land Speed Record.
Credit: BLOODHOUND SSC image by CURVENTA

World class UK research is helping to build the fastest car in the world thanks to the Engineering and Physical Sciences Research Council (EPSRC).

The BLOODHOUND SSC Project, led by Richard Noble OBE, is aiming to set a new world land speed record of a thousand miles per hour by 2011.

The challenge at the heart of the project is to create a car capable of 1,000mph – a car 30% faster than any car that has gone before.

An aerodynamics team at Swansea University – funded by EPSRC – is playing a vital role. Using Computational Fluid Dynamics (CFD), the team has spent the last year creating the predictive airflow data that has shaped the car.

In time, the research could lead to better vehicle or aircraft design, improved fuel efficiencies, and even new medical techniques.

"From the nose to the tail, anything that has any kind of aerodynamic influence we are modelling," says researcher Dr. Ben Evans – who as a school boy watched the Thrust SSC record on TV.

"It's the kind of thing aerospace engineers would have traditionally done in a wind tunnel, but we're doing it on a computer, a big multi-processor super computer. Wind tunnels have massive limitations. BLOODHOUND SSC is a car, so it's rolling on the ground and there are no wind tunnels in existence where you can simulate a rolling ground with a car travelling faster than mach one, faster than the speed of sound."

This 'mach factor' is the major difference between this vehicle and its predecessor Thrust SSC. Thrust SSC was a supersonic car in that it crossed the sound barrier and was supersonic for a matter of seconds.

But with BLOODHOUND, the target speed is 1,000mph - mach 1.4. It will be going supersonic way beyond mach one, and for a much longer time period, which means the supersonic shockwaves it creates will be far stronger than Thrust SSC, and they will interact with the car and the desert floor for much longer.

"Once you start approaching, and go beyond the speed of sound, you can no longer send a pressure wave forward to tell the air ahead of you you're coming," explains Evans. "What happens is a big pressure wall builds up in front of you. Rather than air slowly and smoothly getting out of the way, at supersonic speeds these changes happen very suddenly in a shockwave."

Supersonic aircraft create these shockwaves and they dissipate in the surrounding atmosphere but still reach the ground as a 'sonic boom'.

Evans adds: "What we're trying to understand is what happens when this shockwave interacts with a solid surface which is a matter of centimetres away."

What the team do know is this 'interaction' creates a phenomenon known as 'spray drag' – a term first coined by BLOODHOUND team member and aerodynamicist Ron Ayers during the Thrust SSC attempts.

Spray drag is an additional drag component not accounted for in aerodynamic or rolling resistance theory.

"As the car interacts with the desert, and the shockwaves interact with the desert, they actually eat up the desert floor," says Evans.

"That introduces sand particles into the aerodynamic flow around the car and this interaction is not accounted for in standard CFD work. We plan to look at this spray drag phenomena, what happens and when, and how the sand particles impinge on the car."

The Swansea team are also looking at key systems in isolation. Work has already changed the car from twin to single air intake for stability.

The car will also sport solid titanium wheels with twin 'keels': "That was fundamentally an aerodynamic design decision," says Evans. "We studied different design options, a single keel running down the centre of the wheel, a design that had three keels and finally the one we went for with two keels. It was chosen as a compromise between lift and drag patterns and minimising the pressure disturbance around the wheel on the desert surface.

"Another thing we have been looking at closely is the exact nose shape. We want a nose that constantly generates a small down force on the front to help keep the car on the ground. But we're also constantly looking a how we can minimise spray drag and if we can constantly achieve a positive pressure on the desert surface leading up to the front wheels then hopefully the surface will remain intact until the front wheels roll over it."

But Evans and the team also remain focussed on the wider aims of the project and the application of their research in other areas.

"The whole point of doing this is not just to create a fast car. We live in a carbon economy and lots of the issues we face will require engineers and scientists to solve them – part of this project is to inspire young people."

And sat at his desk in Swansea he has a constant reminder of the potential of CFD.

"Some of my university colleagues are working on blood flow monitoring through the arterial system and trying to predict when aneurysms will explode through pressure loadings.

"On one side of the office we have pictures of Bloodhound and on the other we have pictures of blood flow through the heart.

"There are the obvious applications in aerospace, but any application you can think of that involves fluid flow can be modelled using CFD. Biomechanical systems seems to be one of the areas CFD is being applied to now."


Story Source:

The above story is based on materials provided by National Physical Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

National Physical Laboratory. "Science Of Speed: Building The Fastest Car In The World." ScienceDaily. ScienceDaily, 24 October 2008. <www.sciencedaily.com/releases/2008/10/081023100554.htm>.
National Physical Laboratory. (2008, October 24). Science Of Speed: Building The Fastest Car In The World. ScienceDaily. Retrieved July 22, 2014 from www.sciencedaily.com/releases/2008/10/081023100554.htm
National Physical Laboratory. "Science Of Speed: Building The Fastest Car In The World." ScienceDaily. www.sciencedaily.com/releases/2008/10/081023100554.htm (accessed July 22, 2014).

Share This




More Matter & Energy News

Tuesday, July 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Government Approves East Coast Oil Exploration

Government Approves East Coast Oil Exploration

AP (July 18, 2014) The Obama administration approved the use of sonic cannons to discover deposits under the ocean floor by shooting sound waves 100 times louder than a jet engine through waters shared by endangered whales and turtles. (July 18) Video provided by AP
Powered by NewsLook.com
Sunken German U-Boat Clearly Visible For First Time

Sunken German U-Boat Clearly Visible For First Time

Newsy (July 18, 2014) The wreckage of the German submarine U-166 has become clearly visible for the first time since it was discovered in 2001. Video provided by Newsy
Powered by NewsLook.com
Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Obama: U.S. Must Have "smartest Airports, Best Power Grid"

Reuters - US Online Video (July 17, 2014) President Barak Obama stopped by at a lunch counter in Delaware before making remarks about boosting the nation's infrastructure. Mana Rabiee reports. Video provided by Reuters
Powered by NewsLook.com
Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

Crude Oil Prices Bounce Back After Falling Below $100 a Barrel

TheStreet (July 16, 2014) Oil Futures are bouncing back after tumbling below $100 a barrel for the first time since May yesterday. Jeff Grossman is the president of BRG Brokerage and trades at the NYMEX. Grossman tells TheStreet the Middle East is always a concern for oil traders. Oil prices were pushed down in recent weeks on Libya increasing its production. Supply disruptions in Iraq fading also contributed to prices falling. News from China's economic front showing a growth for the second quarter also calmed fears on its slowdown. Jeff Grossman talks to TheStreet's Susannah Lee on this and more on the Energy Department's Energy Information Administration (EIA) report. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins