Featured Research

from universities, journals, and other organizations

Interaction Between Gene Variants May Alter Brain Function In Schizophrenia

Date:
November 11, 2008
Source:
Massachusetts General Hospital
Summary:
Scientists are giving what may be the first look at how interactions between genes underlie a key symptom of schizophrenia, impaired working memory. Functional imaging studies reveal how a combination of common variants in two genes is associated with reduced activity of important brain structures in schizophrenia patients but not in normal controls.

A collaborative study led by investigators from Massachusetts General Hospital (MGH) is giving what may be the first look at how interactions between genes underlie a key symptom of schizophrenia, impaired working memory. Functional imaging studies reveal how a combination of common variants in two genes is associated with reduced activity of important brain structures in schizophrenia patients but not in normal controls.

Related Articles


"Schizophrenia is a highly genetic disorder, but we are learning that its genetics are not straightforward. In most cases potential risk genes appear to have very small effects on symptoms, making it difficult to attribute clinical findings to particular genes," says Joshua Roffman, MD, of the MGH Department of Psychiatry, the study's lead author. "To amplify some of these subtle effects, we and others are looking how the genes affect brain function, rather than just behavior."

The team – which included investigators from the University of New Mexico, University of Iowa and University of Minnesota through the MIND Clinical Imaging Consortium – used functional MRI to scan an area of the prefrontal cortex known to be critical to working memory in 79 schizophrenia patients and 75 healthy controls as they completed a memory task. Levels of cortical activity were then analyzed for any association with common variants in two genes: MTHFR, which regulates folate metabolism and has been associated with schizophrenia risk, and COMT, which is involved with dopamine processing during working memory.

Although the schizophrenia-associated variant of MTHFR was found in both patients and controls, when the working memory task become more difficult, weaker cortical function associated with that variant was seen only in the schizophrenia patients, not in controls. While variations in COMT did not influence cortical activation patterns on their own, the combined effects of both genes did make a difference. The reduction in cortical function seen in patients with the schizophrenia-associated MTHFR variant was even more pronounced in patients who also had a COMT variant previously associated with less efficient working-memory-related brain activity.

"Based on the known effects of these alleles on brain biochemistry, it is likely that our results reflect cumulative impacts of the gene variants on dopamine signaling, particularly in the prefrontal cortex. These findings may help us to identify patients more likely to benefit from new treatments targeting the dopamine and folate systems," Roffman says. "We are hopeful that this approach will catalyze the development of individualized treatment regimens, since it will allow us to examine the effects of treatment-related genes on brain function using a much smaller groups of study participants."

Roffman is an instructor in Psychiatry at Harvard Medical School. Additional authors of the PNAS study are Randy Gollub, MD, PhD, Anthony Weiss, MD, Donald Goff, MD, and Dara Manoach, PhD, MGH Psychiatry; Vince Calhoun, PhD, Vincent Clark, PhD, University of New Mexico; Thomas Wassink, MD, Beng Ho, MD, and Nancy Andreasen, MD, PhD; University of Iowa; Tonya White, MD, University of Minnesota; and Jill Fries, MIND Research Network. The study was supported by grants from the U.S. Department of Energy and the National Institutes of Health.

The report has been released online in the Early Edition of the Proceedings of the National Academy of Sciences.


Story Source:

The above story is based on materials provided by Massachusetts General Hospital. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts General Hospital. "Interaction Between Gene Variants May Alter Brain Function In Schizophrenia." ScienceDaily. ScienceDaily, 11 November 2008. <www.sciencedaily.com/releases/2008/11/081107143757.htm>.
Massachusetts General Hospital. (2008, November 11). Interaction Between Gene Variants May Alter Brain Function In Schizophrenia. ScienceDaily. Retrieved March 3, 2015 from www.sciencedaily.com/releases/2008/11/081107143757.htm
Massachusetts General Hospital. "Interaction Between Gene Variants May Alter Brain Function In Schizophrenia." ScienceDaily. www.sciencedaily.com/releases/2008/11/081107143757.htm (accessed March 3, 2015).

Share This


More From ScienceDaily



More Mind & Brain News

Tuesday, March 3, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

This Nasal Treatment Could Help Ease Migraine Pain

This Nasal Treatment Could Help Ease Migraine Pain

Newsy (Mar. 2, 2015) Researchers gave lidocaine to 112 patients, and about 88 percent of the subjects said they needed less migraine-relief medicine the next day. Video provided by Newsy
Powered by NewsLook.com
How Facebook Use Can Lead To Depression

How Facebook Use Can Lead To Depression

Newsy (Mar. 1, 2015) Margaret Duffy of the University of Missouri talks about her study on the social network and the envy and depression that Facebook use can cause. Video provided by Newsy
Powered by NewsLook.com
The Best Foods to Battle Stress

The Best Foods to Battle Stress

Buzz60 (Feb. 26, 2015) If you&apos;re dealing with anxiety, there are a few foods that can help. Krystin Goodwin (@krystingoodwin) has the best foods to tame stress. Video provided by Buzz60
Powered by NewsLook.com
Sleeping Too Much Or Too Little Might Increase Stroke Risk

Sleeping Too Much Or Too Little Might Increase Stroke Risk

Newsy (Feb. 26, 2015) People who sleep more than eight hours per night are 45 percent more likely to have a stroke, according to a University of Cambridge study. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins