Featured Research

from universities, journals, and other organizations

Simple Brain Mechanisms Explain Arbitrary Human Visual Decisions

Date:
November 10, 2008
Source:
Washington University School of Medicine
Summary:
Scientists report that a simple decision-making task does not involve the frontal lobes, where many of the higher aspects of human cognition, including self-awareness, are thought to originate. Instead, the regions that decide are the same brain regions that receive stimuli relevant to the decision and control the body's response to it.

Model of the human brain.
Credit: iStockphoto/Karen Roach

Mark Twain, a skeptic of the idea of free will, argues in his essay "What Is Man?" that humans do not command their minds or the opinions they form. "You did not form that [opinion]," a speaker identified as "old man" says in the essay. "Your [mental] machinery did it for you—automatically and instantly, without reflection or the need of it."

Related Articles


Twain's views get a boost this week from researchers at Washington University School of Medicine in St. Louis and University of Chieti, Italy. In Nature Neuroscience, scientists report that a simple decision-making task does not involve the frontal lobes, where many of the higher aspects of human cognition, including self-awareness, are thought to originate. Instead, the regions that decide are the same brain regions that receive stimuli relevant to the decision and control the body's response to it.

Other researchers had already demonstrated the same principle in primates. But many still assumed that the more complex human brain would have a more general decision-making module that involved the frontal lobe independently of the neural systems for perception and action.

"It is important to understand how the brain makes decisions under normal conditions to gain insight into diseases like Alzheimer's disease, traumatic brain injury or stroke in which decision-making is disrupted," says senior author Maurizio Corbetta, M.D., the Norman J. Stupp Professor of Neurology. "We like to think of our decisions as willful acts, but that may be an illusion. Many decisions may be much more directly and automatically driven by what our brain is sensing."

For the study, lead author Annalisa Tosoni, a graduate student at the University of Chieti, trained volunteers to perform a task that involved discriminating between an image of a face and an image of a building. Varying degrees of noise obscured the image during the brief time it was visible. Volunteers were asked to indicate which type of image they believed they had seen by either moving their eyes in a particular direction if they had seen a face or pointing their hand in the same direction if they had seen a building.

"This decision is not automatic," Corbetta says. "It requires both attention to the stimuli and control of the response."

Researchers took functional magnetic resonance imaging scans of subjects' brains as they performed the task. The scans were conducted at the Institute of Technology and Advanced Bio-imaging in Chieti as a collaboration between Corbetta; Gaspare Galati, Ph.D., associate professor of psychology at the University of Rome; and Gian Luca Romani, Ph.D., professor of physics at the University of Chieti. To help distinguish between the influx of sensory information and the decision to move the eye or hand, subjects had to wait for 10 seconds after seeing the image before indicating which type it was.

Scientists concentrated on regions of the brain that are responsible for planning actions (eye or hand movements) in the parietal lobe. Activity in these different regions would increase in correspondence with the type of stimulus a subject was being shown (face or building) and the type of response they were planning as a result (eye or hand movement). When the stimulus had less noise and subjects were more confident in their choice, brain activity levels in the appropriate area rose proportionally. In addition, these regions showed activity that related to the choice even when the stimulus was ambiguous.

"This suggests that these regions in the parietal lobe processed all the sensory, decision and motor signals necessary to make and act on the decision," Tosoni says. "In contrast, no area in the frontal lobe, thought to be involved in decision-making, significantly increased its activity at the time of decision."

The training period that preceded the scans could have involved the frontal lobes, Corbetta notes. Those areas may have delegated responsibility for the decision to premotor brain regions as the volunteers learned the task. But once the task was learned, the frontal lobes were silent.

"Even for arbitrary and somehow complex visual decisions, it seems to be purely a matter of the amount of sensory information pushing the brain toward one choice or another " he says.

Tosoni and Corbetta plan next to probe whether more complicated decisions are carried out by this relatively simple sensory-motor mechanism and how decisions are affected by the amount of reward the subject expects when performing simple and complex decisions.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tosoni A, Galati G, Romani GL, Corbetta M. Sensory-motor mechanisms in human parietal cortex underlie arbitrary visual decisions. Nature Neuroscience, Online Nov. 9, 2008

Cite This Page:

Washington University School of Medicine. "Simple Brain Mechanisms Explain Arbitrary Human Visual Decisions." ScienceDaily. ScienceDaily, 10 November 2008. <www.sciencedaily.com/releases/2008/11/081109193435.htm>.
Washington University School of Medicine. (2008, November 10). Simple Brain Mechanisms Explain Arbitrary Human Visual Decisions. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2008/11/081109193435.htm
Washington University School of Medicine. "Simple Brain Mechanisms Explain Arbitrary Human Visual Decisions." ScienceDaily. www.sciencedaily.com/releases/2008/11/081109193435.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Mind & Brain News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Are Female Bosses More Likely To Be Depressed?

Are Female Bosses More Likely To Be Depressed?

Newsy (Nov. 24, 2014) — A new study links greater authority with increased depressive symptoms among women in the workplace. Video provided by Newsy
Powered by NewsLook.com
Winter Can Cause Depression — Here's How To Combat It

Winter Can Cause Depression — Here's How To Combat It

Newsy (Nov. 23, 2014) — Millions of American suffer from seasonal depression every year. It can lead to adverse health effects, but there are ways to ease symptoms. Video provided by Newsy
Powered by NewsLook.com
Could Your Genes Be The Reason You're Single?

Could Your Genes Be The Reason You're Single?

Newsy (Nov. 21, 2014) — Researchers in Beijing discovered a gene called 5-HTA1, and carriers are reportedly 20 percent more likely to be single. Video provided by Newsy
Powered by NewsLook.com
Milestone Birthdays Can Bring Existential Crisis, Study Says

Milestone Birthdays Can Bring Existential Crisis, Study Says

Newsy (Nov. 21, 2014) — Researchers find that as people approach new decades in their lives they make bigger life decisions. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins