Featured Research

from universities, journals, and other organizations

Blood-brain Barrier Disarmed In Rodents: Hormone Shows Promise In Reversing Alzheimer’s Disease And Stroke

Date:
November 12, 2008
Source:
Saint Louis University
Summary:
Researchers have disarmed the blood-brain barrier sentry that keeps a potential treatment for stroke and Alzheimer's disease from getting into the brain. The brain is protected by the blood-brain barrier (BBB), a gate-keeping system of cells that lets in nutrients and keeps out foreign substances. The blood-brain barrier passes no judgment on which foreign substances are trying to get into the brain to treat diseases and which are trying to do harm, so it blocks them without discrimination.

Saint Louis University researchers have identified a novel way of getting a potential treatment for Alzheimer's disease and stroke into the brain where it can do its work.

"We found a unique approach for delivering drugs to the brain," says William A. Banks, M.D., professor of geriatrics and pharmacological and physiological science at Saint Louis University. "We're turning off the guardian that's keeping the drugs out of the brain."

The brain is protected by the blood-brain barrier (BBB), a gate-keeping system of cells that lets in nutrients and keeps out foreign substances. The blood-brain barrier passes no judgment on which foreign substances are trying to get into the brain to treat diseases and which are trying to do harm, so it blocks them without discrimination.

"The problem in treating a lot of diseases of the central nervous system – such as Alzheimer's disease, HIV and stroke – is that we can't get drugs past the blood-brain barrier and into the brain," says Banks, who also is a staff physician at Veterans Affairs Medical Center in St. Louis.

"Our new research shows a way of getting a promising treatment for these types of devastating diseases to where they need to be to work."

The therapy – known as PACAP27 -- is a hormone produced by the body that is a general neuro-protectant. PACAP stands for pituitary adenylate cyclase-activating polypeptide. "It is a general protector of the brain against many types of insult and injury," Banks says.

He compares a specific guarding mechanism in the BBB -- efflux pumps – to bouncers at exclusive nightclubs. While they welcome those on the approved guest list, they look for trouble-makers trying to crash the party, refuse to let them in and evict them if they do get in.

The scientists isolated the particular gatekeeper than evicts PACAP27. Then they designed an antisense, a specific molecule that turned off the impediment.

"We went after the guard and essentially told him to go on break for a while so PACAP27 could get into the brain," Banks says.

They used mouse models of Alzheimer's disease and stroke to test what would happen if PACAP27 could get into the brain.

"We reversed the symptoms of the illnesses," Banks says. "The mice that had a version of Alzheimer's disease became smarter and in the stroke model, we reduced the amount of damage caused by the blockage of blood to the brain and improved brain recovery."

Simply turning off the gatekeeper that kept PACAP27 out of the brain allowed enough of the hormone that already is in the body to get inside the brain, where it effectively treated strokes. However, the mice that had a version of Alzheimer's disease needed both an extra dose of PACAP27 and the antisense that turned off the gatekeeper to improve learning.

"These findings are significant for three reasons. We have found a therapy that reverses symptoms of Alzheimers's disease and stroke in a mouse model. We have isolated the particular roadblock that keeps the treatment from getting into the brain. And we have found a way to finesse that obstacle so the medicine can get into the brain to do its work," Banks says. "This could have implications in treating many diseases of the central nervous system."

The findings were published in the Nov. 12 early online issue of the Journal of Cerebral Blood Flow & Metabolism.


Story Source:

The above story is based on materials provided by Saint Louis University. Note: Materials may be edited for content and length.


Cite This Page:

Saint Louis University. "Blood-brain Barrier Disarmed In Rodents: Hormone Shows Promise In Reversing Alzheimer’s Disease And Stroke." ScienceDaily. ScienceDaily, 12 November 2008. <www.sciencedaily.com/releases/2008/11/081112074428.htm>.
Saint Louis University. (2008, November 12). Blood-brain Barrier Disarmed In Rodents: Hormone Shows Promise In Reversing Alzheimer’s Disease And Stroke. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2008/11/081112074428.htm
Saint Louis University. "Blood-brain Barrier Disarmed In Rodents: Hormone Shows Promise In Reversing Alzheimer’s Disease And Stroke." ScienceDaily. www.sciencedaily.com/releases/2008/11/081112074428.htm (accessed April 18, 2014).

Share This



More Mind & Brain News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins