Featured Research

from universities, journals, and other organizations

Cooling The Brain Prevents Cell Death In Young Mice Exposed To Anesthesia

Date:
November 24, 2008
Source:
Washington University School of Medicine
Summary:
New research suggests cooling the brain may prevent the death of nerve cells that has been observed in infant mice exposed to anesthesia. The effects of anesthesia on human infants and young children have been debated among neuroscientists, but growing evidence suggests exposure to anesthetic drugs during brain development may contribute to behavioral and developmental delays.

New research from Washington University School of Medicine in St. Louis suggests cooling the brain may prevent the death of nerve cells that has been observed in infant mice exposed to anesthesia. The effects of anesthesia on human infants and young children have been debated among neuroscientists, but growing evidence suggests exposure to anesthetic drugs during brain development may contribute to behavioral and developmental delays.

The same researchers previously had reported that when young rodents were exposed to alcohol, anesthetics or anticonvulsants, large numbers of their brain cells died through a process known as neuroapoptosis. This latest work suggests such damage may be preventable.

The new findings are reported November 17 at Neuroscience 2008, the annual meeting of the Society for Neuroscience.

"Cooling the brain seems to be quite effective in suppressing nerve cell death after an infant animal has been exposed to an anesthetic drug," says John W. Olney, M.D., the study's senior investigator and the John P. Feighner Professor of Neuropsychopharmacology. "We don't yet know whether this cooling only temporarily suppresses or whether it permanently prevents this brain damage from occurring. We're currently working to clarify that."

Olney's research team previously had demonstrated that a small dose of anesthetic drugs, enough to lightly anesthetize an infant mouse for about one hour, was sufficient to trigger neuroapoptosis.

"It has been widely assumed that the benefits of anesthesia can be achieved without adverse consequences," Olney says. "But that assumption has been called into question in recent years by work from our laboratory and others around the world."

In this study, Olney found the anesthetic drugs isoflurane and ketamine increased neuroapoptosis in infant mice at normal or high temperatures. However, hypothermia during exposure to anesthesia blocked neuroapoptosis and also reduced the low level of neuroapoptosis that occurs normally during brain development.

"Some cells fail to make the normal connections that they are supposed to make in order to become integrated into a neural network," he explains. "It's necessary for those cells to die and to be removed from the brain. Cooling the brain also suppresses that process."

If Olney's research team can demonstrate cooling the brain only delays that healthy process temporarily, but permanently prevents unhealthy neuroapoptosis due to anesthesia exposure, the technique may be useful someday in preventing cognitive and developmental problems in some children exposed to anesthesia during surgery.

Olney says it's tricky to demonstrate links between developmental deficits and exposure to anesthetic drugs because the type of deficit can vary depending upon the developmental age at which exposure occurs. Different parts of the brain develop at different times, so exposure during one period of development may have a very different effect than exposure earlier or later in brain development.

"We believe there are certain early periods when the damage is not only more likely to be severe, but it's also likely to be more widespread throughout different regions of the brain," he says. "Naturally, if more of the brain is involved and damage to those regions is more severe, it's going to cause more pronounced neural and cognitive consequences."

Olney says it is likely that the protective effects of hypothermia can be achieved either by cooling the entire body or by applying a cooling helmet to the head.

In addition, Olney has demonstrated in other research that it may be possible to prevent neuroapoptosis by treating mice with other drugs. He recently reported that the drug lithium may provide similar protection against damage from anesthesia.

Reference: Creeley CE, Straiko MMW, Cattano D, Olney JW. Hypothermia prevents spontaneous and anesthesia-induced neuroapoptosis in the infant mouse brain. Abstract for Neuroscience 2008. Presented on Nov. 17, 2008.

Olney has a patent application pending on methods for protecting the developing brain, but it is not related to the hypothermia research.

Funding from the National Institutes of Health supported this research.


Story Source:

The above story is based on materials provided by Washington University School of Medicine. Note: Materials may be edited for content and length.


Cite This Page:

Washington University School of Medicine. "Cooling The Brain Prevents Cell Death In Young Mice Exposed To Anesthesia." ScienceDaily. ScienceDaily, 24 November 2008. <www.sciencedaily.com/releases/2008/11/081117121224.htm>.
Washington University School of Medicine. (2008, November 24). Cooling The Brain Prevents Cell Death In Young Mice Exposed To Anesthesia. ScienceDaily. Retrieved September 17, 2014 from www.sciencedaily.com/releases/2008/11/081117121224.htm
Washington University School of Medicine. "Cooling The Brain Prevents Cell Death In Young Mice Exposed To Anesthesia." ScienceDaily. www.sciencedaily.com/releases/2008/11/081117121224.htm (accessed September 17, 2014).

Share This



More Mind & Brain News

Wednesday, September 17, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

FDA Eyes Skin Shocks Used at Mass. School

FDA Eyes Skin Shocks Used at Mass. School

AP (Sep. 15, 2014) The FDA is considering whether to ban devices used by the Judge Rotenberg Educational Center in Canton, Massachusetts, the only place in the country known to use electrical skin shocks as aversive conditioning for aggressive patients. (Sept. 15) Video provided by AP
Powered by NewsLook.com
Shocker: Journalists Are Utterly Addicted To Coffee

Shocker: Journalists Are Utterly Addicted To Coffee

Newsy (Sep. 13, 2014) A U.K. survey found that journalists consumed the most amount of coffee, but that's only the tip of the coffee-related statistics iceberg. Video provided by Newsy
Powered by NewsLook.com
'Magic Mushrooms' Could Help Smokers Quit

'Magic Mushrooms' Could Help Smokers Quit

Newsy (Sep. 11, 2014) In a small study, researchers found that the majority of long-time smokers quit after taking psilocybin pills and undergoing therapy sessions. Video provided by Newsy
Powered by NewsLook.com
'Fat Shaming' Might Actually Cause Weight Gain

'Fat Shaming' Might Actually Cause Weight Gain

Newsy (Sep. 11, 2014) A study for University College London suggests obese people who are discriminated against gain more weight than those who are not. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

    Environment News

      Technology News



      Save/Print:
      Share:

      Free Subscriptions


      Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

      Get Social & Mobile


      Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

      Have Feedback?


      Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
      Mobile: iPhone Android Web
      Follow: Facebook Twitter Google+
      Subscribe: RSS Feeds Email Newsletters
      Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins