Featured Research

from universities, journals, and other organizations

Planet Formation Could Lie In Stellar Storms Rather Than Gravitational Instability

Date:
December 15, 2008
Source:
San Francisco State University
Summary:
New research suggests that turbulence plays a critical role in creating ripe conditions for the birth of planets. The study challenges the prevailing theory of planet formation. Using three-dimensional simulations of the dust and gas that orbits young stars, the study demonstrates that turbulence is a significant obstacle to gravitational instability, the process that scientists have used since the 1970s to explain the early stage of planet formation.

A sequence of images showing how turbulent forces (the Coriolis Effect and vertical shear) mix up the layers of dust and gas orbiting young stars. Images depict a 2-d slice through Joseph Barranco's 3-d simulations. Deep red indicates dust-rich gas. Deep blue indicates pure gas. The simulation is based on dust and gas that is the same distance away from its star as earth is from the sun. The time interval between frames is 3.4 years.
Credit: Joseph Barranco

New research suggests that turbulence plays a critical role in creating ripe conditions for the birth of planets. The study, to be published in The Astrophysical Journal, challenges the prevailing theory of planet formation.

Using three-dimensional simulations of the dust and gas that orbits young stars, the study demonstrates that turbulence is a significant obstacle to gravitational instability, the process that scientists have used since the 1970s to explain the early stage of planet formation.

Gravitational instability proposes that dust will settle into the middle of the protoplanetary disk around a newly-formed star. It is thought that the dust will gradually become denser and thinner until it reaches a critical point and collapses into kilometer-size clumps, which later collide to form planets. But new research by San Francisco State University professor Joseph Barranco shows that turbulent forces keep the dust and gas swirling and prevent it from forming a dense and thin enough layer for gravitational instability to occur.

"These results defy the proposed solution of how planets are formed," Barranco said. "Scientists have long been using gravitational instability theory to explain how millimeter-size particles grow to kilometer-size, but these new simulations open new avenues of investigation. Perhaps massive storms, similar to hurricanes found on the Earth or Jupiter, provide clues about how tiny dust grains clump together to become kilometer-size boulders."

While previous studies have used two-dimensional models to simulate the orbiting dust and gas around young stars, these failed to take account of a crucial force that causes turbulence: the Coriolis Effect. The first to use three-dimensional models, Barranco investigated the Coriolis Effect, the same mechanism that produces cyclones and tornadoes on earth, and vertical shear. Vertical shear occurs because the faster-moving dust settles into the middle of the orbiting plane with the slower-moving gas above and below it. The velocity difference between the dust and gas causes waves to form, similar to when wind blows over the surface of water.

"What happens to the dust and gas after a period of turbulence is still an open question," Barranco said. "But it could be that in the quiet center of a hurricane-like storm, dust can collect and get trapped, seeding the beginnings of planet formation."

Joseph A. Barranco is assistant professor of physics at San Francisco State University.


Story Source:

The above story is based on materials provided by San Francisco State University. Note: Materials may be edited for content and length.


Cite This Page:

San Francisco State University. "Planet Formation Could Lie In Stellar Storms Rather Than Gravitational Instability." ScienceDaily. ScienceDaily, 15 December 2008. <www.sciencedaily.com/releases/2008/12/081212101543.htm>.
San Francisco State University. (2008, December 15). Planet Formation Could Lie In Stellar Storms Rather Than Gravitational Instability. ScienceDaily. Retrieved September 20, 2014 from www.sciencedaily.com/releases/2008/12/081212101543.htm
San Francisco State University. "Planet Formation Could Lie In Stellar Storms Rather Than Gravitational Instability." ScienceDaily. www.sciencedaily.com/releases/2008/12/081212101543.htm (accessed September 20, 2014).

Share This



More Space & Time News

Saturday, September 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

MIT BioSuit A New Take On Traditional Spacesuits

MIT BioSuit A New Take On Traditional Spacesuits

Newsy (Sep. 19, 2014) The MIT BioSuit could be an alternative to big, bulky traditional spacesuits, but the concept needs some work. Video provided by Newsy
Powered by NewsLook.com
Boeing, SpaceX to Send Astronauts to Space Station

Boeing, SpaceX to Send Astronauts to Space Station

AFP (Sep. 17, 2014) NASA selected Boeing and SpaceX on Tuesday to build America's next spacecraft to carry astronauts to the International Space Station (ISS) by 2017, opening the way to a new chapter in human spaceflight. Duration: 01:13 Video provided by AFP
Powered by NewsLook.com
East Coast Treated To Rare Meteor Sighting

East Coast Treated To Rare Meteor Sighting

Newsy (Sep. 16, 2014) Numerous residents along the East Coast reported seeing a bright meteor flash through the sky Sunday night. Video provided by Newsy
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins