Featured Research

from universities, journals, and other organizations

Method Sorts Out Double-walled Carbon Nanotube Problem

Date:
December 16, 2008
Source:
Northwestern University
Summary:
It's hard to study something with any rigor if the subject can't be produced uniformly and efficiently. Researchers who study double-walled carbon nanotubes find themselves in just this predicament. The problem is that current techniques for synthesizing double-walled carbon nanotubes also produce unwanted single- and multi-walled nanotubes. Researchers now offer a clever solution: They used a technique called density gradient ultracentrifugation to cleanly and easily separate the double-walled nanotubes from the undesirables.

It's hard to study something with any rigor if the subject can't be produced uniformly and efficiently. Researchers who study double-walled carbon nanotubes -- nanomaterials with promising technological applications -- find themselves in just this predicament.

Related Articles


The problem is that current techniques for synthesizing double-walled carbon nanotubes also produce unwanted single- and multi-walled nanotubes. These two forms each have interesting properties, but an intriguing blend of those properties is found in double-walled nanotubes, attracting the attention of an increasing number of researchers. (A double-walled nanotube is made up of two concentric single-walled nanotubes.)

Perhaps most significantly, double-walled nanotubes provide distinct advantages when used in transparent conductors, materials that are important components of solar cells and flat-panel displays because they are optically transparent and electrically conductive. As the demand for energy-efficient devices and alternative energy sources rises worldwide so does the demand for transparent conductive films.

Two Northwestern University researchers now offer a clever solution to the double-walled nanotube production problem. They used a technique developed at Northwestern called density gradient ultracentrifugation to cleanly and easily separate the double-walled nanotubes (DWNTs) from the single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs).

The sorting method works by exploiting subtle differences in the buoyant densities of the nanotubes as a function of their size and electronic behavior. The results will be published online Sunday, Dec. 14, by the journal Nature Nanotechnology. The paper also will appear as the cover story in the January 2009 issue of the journal.

"Nanomaterials possess the unique attribute that their properties depend on physical dimensions such as diameter," said Mark C. Hersam, professor of materials science and engineering in Northwestern's McCormick School of Engineering and Applied Science, professor of chemistry in the Weinberg College of Arts and Sciences and the paper's senior author.

"This size dependence implies, however, that the physical dimensions must be exquisitely controlled in order to realize uniform and reproducible performance in devices. Our study directly addresses this issue for double-walled carbon nanotubes, an emerging nanomaterial with applications in information technology, biotechnology and alternative energy," said Hersam.

He collaborated with Alexander A. Green, a graduate student in materials science and engineering at Northwestern and lead author of the paper, titled "Processing and Properties of Highly Enriched Double-Walled Carbon Nanotubes."

Using the Northwestern method, carbon nanotubes first are encapsulated in water by soap-like molecules called surfactants. The surfactant-coated nanotubes then are sorted in density gradients that are spun at tens of thousands of rotations per minute in an ultracentrifuge. Each nanotube's diameter and electronic structure help determine the nanotube's buoyant density, which enables the method to separate DWNTs from the SWNTs and MWNTs.

The double-walled nanotubes, the researchers discovered, were approximately 44 percent longer than the single-walled nanotubes. This longer length of the DWNTs results in a factor of 2.4 improvement in the electrical conductivity of transparent conductors.

Double-walled nanotubes also enable improved spatial resolution and longer scanning lifetimes as tips for atomic force microscopes and are useful in field-effect transistors, biosensing and drug delivery.


Story Source:

The above story is based on materials provided by Northwestern University. Note: Materials may be edited for content and length.


Cite This Page:

Northwestern University. "Method Sorts Out Double-walled Carbon Nanotube Problem." ScienceDaily. ScienceDaily, 16 December 2008. <www.sciencedaily.com/releases/2008/12/081214190949.htm>.
Northwestern University. (2008, December 16). Method Sorts Out Double-walled Carbon Nanotube Problem. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2008/12/081214190949.htm
Northwestern University. "Method Sorts Out Double-walled Carbon Nanotube Problem." ScienceDaily. www.sciencedaily.com/releases/2008/12/081214190949.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins