Featured Research

from universities, journals, and other organizations

Computational Tool To Untangle Complex Data Developed

Date:
December 18, 2008
Source:
Dartmouth College
Summary:
Researchers have developed a mathematical tool that can be used to unscramble the underlying structure of time-dependent, interrelated data, like the votes of legislators over their careers, second-by-second activity of the stock market, or levels of oxygenated blood flow in the brain.

A group of Dartmouth researchers have developed a mathematical tool that can be used to unscramble the underlying structure of time-dependent, interrelated, complex data, like the votes of legislators over their careers, second-by-second activity of the stock market, or levels of oxygenated blood flow in the brain.

Related Articles


The researchers named their tool the Partition Decoupling Method, and their study was recently published in the online issue of the Proceedings of the National Academy of Sciences. The authors are Gregory Leibon, Scott Pauls, and Daniel Rockmore with Dartmouth's Department of Mathematics, and Robert Savell from Dartmouth's Thayer School of Engineering.

"With respect to the equities market we created a map that illustrated a generalized notion of sector and industry, as well as the interactions between them, reflecting the different levels of capital flow, among and between companies, industries, sectors, and so forth," says Rockmore, the John G. Kemeny Parents Professor of Mathematics and a professor of computer science. "In fact, it is this idea of flow, be it capital, oxygenated blood, or political orientation, that we are capturing."

Capturing patterns in this so-called 'flow' is important to understand the subtle interdependencies among the different components of a complex system. The researchers use the mathematics of a subject called spectral analysis, which is often used to model heat flow on different kinds of geometric surfaces, to analyze the network of correlations. This is combined with statistical learning tools to produce the Partition Decoupling Method (PDM). The PDM discovers regions where the flow circulates more than would be expected at random, collapsing these regions and then creating new networks of sectors as well as residual networks. The result effectively zooms in to obtain detailed analysis of the interrelations as well as zooms out to view the coarse-scale flow at a distance.

Rockmore explains that the Partition Decoupling Method takes a different approach that other tools designed to tease out how complex systems behave. "The PDM is not strictly hierarchical," says Rockmore. "It instead details the interaction between a number of different elements of the system. PDM places no constraint on interconnectivity."

The researchers applied the PDM to the equities market, a system rich in numerical data, as well a complex web of interdependent markets, industries, and currencies. The PDM proved robust, revealing both known structures and patterns and new structures that came to light with the new analysis.

"We think this tool can be useful, when applied in the financial realm, to portfolio and risk management," says Rockmore. "We expect similar results as it is applied to different complex systems like the brain, or even the collections of brains that are societies."


Story Source:

The above story is based on materials provided by Dartmouth College. Note: Materials may be edited for content and length.


Cite This Page:

Dartmouth College. "Computational Tool To Untangle Complex Data Developed." ScienceDaily. ScienceDaily, 18 December 2008. <www.sciencedaily.com/releases/2008/12/081216131022.htm>.
Dartmouth College. (2008, December 18). Computational Tool To Untangle Complex Data Developed. ScienceDaily. Retrieved December 21, 2014 from www.sciencedaily.com/releases/2008/12/081216131022.htm
Dartmouth College. "Computational Tool To Untangle Complex Data Developed." ScienceDaily. www.sciencedaily.com/releases/2008/12/081216131022.htm (accessed December 21, 2014).

Share This


More From ScienceDaily



More Computers & Math News

Sunday, December 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Building Google Into Cars

Building Google Into Cars

Reuters - Business Video Online (Dec. 19, 2014) Google's next Android version could become the standard that'll power your vehicle's entertainment and navigation features, Reuters has learned. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com
After Sony Hack, What's Next?

After Sony Hack, What's Next?

Reuters - US Online Video (Dec. 19, 2014) The hacking attack on Sony Pictures has U.S. government officials weighing their response to the cyber-attack. Linda So reports. Video provided by Reuters
Powered by NewsLook.com
Navy Unveils Robot Fish

Navy Unveils Robot Fish

Reuters - Light News Video Online (Dec. 18, 2014) The U.S. Navy unveils an underwater device that mimics the movement of a fish. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
How 2014 Shaped The Future Of The Internet

How 2014 Shaped The Future Of The Internet

Newsy (Dec. 18, 2014) It has been a long, busy year for Net Neutrality. The stage is set for an expected landmark FCC decision sometime in 2015. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins