Featured Research

from universities, journals, and other organizations

New Model Explains Movements Of The Moon

Date:
December 20, 2008
Source:
Plataforma SINC
Summary:
Scientists are developing a mathematical formula to study the rotation of the moon, taking into account its structure, which comprises a solid external layer and a fluid internal core. Their work is part of an international study, which has come up with an improved theoretical model about the orbital and rotational dynamics of the Earth and its satellite, and which the scientific community will be able to use to obtain more precise measurements in order to aid future NASA missions to the moon.

Installation of CCRs on the moon during the Apollo 11 mission.
Credit: NASA

Two researchers from the universities of Valladolid and Alicante are developing a mathematical formula to study the rotation of the moon, taking into account its structure, which comprises a solid external layer and a fluid internal core.

Their work is part of an international study, which has come up with an improved theoretical model about the orbital and rotational dynamics of the Earth and its satellite, and which the scientific community will be able to use to obtain more precise measurements in order to aid future NASA missions to the moon.

Juan J. A. Getino, from the Applied Mathematics Department of the University of Valladolid, and Alberto Escapa, from the Applied Mathematics Department of the Higher Polytechnic School of the University of Alicante, suggest in their work that the Earth and the moon should be considered as “multi-layered” systems. In order to analyse their movements, the researchers have used Hamiltonian mechanics, a kind of classical mechanics used, among other things, to study the movements of heavenly bodies in response to gravitational effects.

“The Earth can be viewed as a three-layered system, with a solid exterior mantle, a fluid intermediary layer and a solid interior nucleus,” Getino tells SINC. The researcher points out that the new proposition applies multi-layer theories to the study of the rotation and movements of the moon, as well as its interaction with the Earth.

“The end objective of this multidisciplinary study is to develop a more complete model of the movements of the moon, to make it possible to correctly interpret the increasingly precise data we have about the distance between it and the Earth,” says Alberto Escapa.

Although based in classic mechanics, the contributions of the Spanish scientists to this study of the rotational and orbital dynamics of the moon are part of a more ambitious project based on Einstein’s general theory of relativity. In fact, the study, published recently in the journal Advances in Space Research, is being led by the relativist astronomer Sergei M. Kopeikin, from the University of Missouri, United States, and also involves the participation of other researchers from the United States, Germany, Russia and China.

Escapa points out that their proposition involves “extrapolating to the moon a mathematical model that we had previously developed in order to explain the small changes within the Earth’s rotational axis”. This model helped to improve GPS navigation systems, and in 2003 led to Getino and Escapa, along with other scientists, being awarded the European Union’s Descartes Prize for Research.

Using a laser to measure the distance between the Earth and the moon

Today, the latest improvements in laser measuring system technology (Lunar Laser Ranging) enable precise measurement of the distance between the Earth and its satellite down to almost a millimetre. Work in this area started with the Apollo era programmes more than 35 years ago, when the first corner-cube reflectors (CCR) started to be installed on the lunar surface. These devices reflect rays of light emitted by various terrestrial stations, making it possible to measure the distance between the Earth and the moon.

The measurements provided by LLR are “crucial”, according to the study, both in terms of moving forward in understanding the fundamental laws of gravitational physics, but also in improving understanding of the moon’s internal structure, as well as to help in the planning of future robotic and manned missions to the moon. The relativist theoretical model, complemented by the work of the Spanish scientists, could help to bring about progress in these fields.

NASA is weighing up the possibility of incorporating the results of this modelling into its GEODYN programme, a piece of software developed in order to analyse the orbits of satellites and estimate geodesic parameters to help improve space ship navigation, and to be able to land precisely on any part of the moon.


Story Source:

The above story is based on materials provided by Plataforma SINC. Note: Materials may be edited for content and length.


Journal Reference:

  1. Kopeikin et al. Prospects in the orbital and rotational dynamics of the Moon with the advent of sub-centimeter lunar laser ranging. Advances in Space Research, 2008; 42 (8): 1378 DOI: 10.1016/j.asr.2008.02.014

Cite This Page:

Plataforma SINC. "New Model Explains Movements Of The Moon." ScienceDaily. ScienceDaily, 20 December 2008. <www.sciencedaily.com/releases/2008/12/081217192747.htm>.
Plataforma SINC. (2008, December 20). New Model Explains Movements Of The Moon. ScienceDaily. Retrieved August 20, 2014 from www.sciencedaily.com/releases/2008/12/081217192747.htm
Plataforma SINC. "New Model Explains Movements Of The Moon." ScienceDaily. www.sciencedaily.com/releases/2008/12/081217192747.htm (accessed August 20, 2014).

Share This




More Space & Time News

Wednesday, August 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com
Space Shuttle Replica Hoisted for Landmark Exhibit

Space Shuttle Replica Hoisted for Landmark Exhibit

Reuters - US Online Video (Aug. 14, 2014) The space shuttle replica Independence has been hoisted atop Space Center Houston's shuttle carrier aircraft, creating a monument to the shuttle program which will open to the public next year. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins