Featured Research

from universities, journals, and other organizations

3-D Cell Growth: Engineers' New Microfluidic Device Could Help With Drug Development

Date:
December 23, 2008
Source:
Massachusetts Institute Of Technology
Summary:
Engineers have built a device that gives them an unprecedented view of three-dimensional cell growth and migration, including the formation of blood vessels and the spread of tumor cells.

MIT engineers built a device that gives them an unprecedented view of 3-d cell growth and migration.
Credit: Photo by Donna Coveney

MIT engineers have built a device that gives them an unprecedented view of three-dimensional cell growth and migration, including the formation of blood vessels and the spread of tumor cells.

Related Articles


The microfluidic device, imprinted on a square inch of plastic, could be used to evaluate the potential side effects of drugs in development, or to test the effectiveness of cancer drugs in individual patients.

Roger Kamm, MIT professor of biological and mechanical engineering, and his colleagues reported their observations of angiogenesis -- the process by which blood vessels are formed -- in the Oct. 31 online issue of the journal Lab on a Chip.

Microfluidic devices have been widely used in recent years to study cells, but most only allow for the study of cells growing on a flat (two-dimensional) surface, or else lack the ability to observe and control cell behavior. With the new device, researchers can observe cells in real time as they grow in a three-dimensional collagen scaffold under precisely controlled chemical or physical conditions.

Observing angiogenesis and other types of cell growth in three dimensions is critical because that is how such growth normally occurs, said Kamm.

Working with researchers around MIT, Kamm has studied growth patterns of many types of cells, including liver cells, stem cells and neurons. He has also used the device to investigate the pressure buildup that causes glaucoma.

The device allows researchers to gain new insight into cell growth patterns. For example, the researchers observed that one type of breast cancer cell tends to migrate in a uniform mass and induces new capillaries to sprout aggressively toward the original tumor, while a type of brain cancer cell breaks from the primary tumor and migrates individually but does not promote capillary formation.

The system is configured so that researchers can manipulate and study mechanical and biochemical factors that influence cell growth and migration, including stiffness of the gel scaffold, concentration of growth factors and other chemicals, and pressure gradients.

Two or three channels imprinted onto the plastic square contain either a normal cell growth medium or a chemical under study, such as growth factor. Cells growing in the scaffold between the channels are bathed in chemicals from the channels, and the effect of the chemicals can be evaluated based on various measures of cell function.

Kamm and his colleagues first described their microfluidic device in a January 2007 paper in Lab on a Chip. Vernella Vickerman, a graduate student in chemical engineering, and Seok Chung, a postdoctoral fellow in biological engineering, played critical roles in developing the device, Kamm said.

The research was funded by Draper Laboratory.


Story Source:

The above story is based on materials provided by Massachusetts Institute Of Technology. Note: Materials may be edited for content and length.


Cite This Page:

Massachusetts Institute Of Technology. "3-D Cell Growth: Engineers' New Microfluidic Device Could Help With Drug Development." ScienceDaily. ScienceDaily, 23 December 2008. <www.sciencedaily.com/releases/2008/12/081218054635.htm>.
Massachusetts Institute Of Technology. (2008, December 23). 3-D Cell Growth: Engineers' New Microfluidic Device Could Help With Drug Development. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2008/12/081218054635.htm
Massachusetts Institute Of Technology. "3-D Cell Growth: Engineers' New Microfluidic Device Could Help With Drug Development." ScienceDaily. www.sciencedaily.com/releases/2008/12/081218054635.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Experimental Ebola Vaccine Shows Promise In Human Trial

Experimental Ebola Vaccine Shows Promise In Human Trial

Newsy (Nov. 27, 2014) — A recent test of a prototype Ebola vaccine generated an immune response to the disease in subjects. Video provided by Newsy
Powered by NewsLook.com
Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins