Featured Research

from universities, journals, and other organizations

How We Make Proper Movements

Date:
December 28, 2008
Source:
Association for Psychological Science
Summary:
How do we make proper movements? A new study in Psychological Science suggests that when we see an object, a number of motor programs in the brain are involuntarily activated (each with a different potential movement we can make), which all compete with one another. One program emerges as the winner of the competition and is ready to be implemented while the other programs (which would result in erroneous movements) are inhibited.

When you first notice a door handle, your brain has already been hard at work. Your visual system first sees the handle, then it sends information to various parts of the brain, which go on to decipher out the details, such as color and the direction the handle is pointing. As the information about an object is sent further along the various brain pathways, more and more details are noticed—in that way, a simple door handle turns into a silver-plated-antique-style-door-handle-facing-right.

Information about the handle also reaches the part of your brain responsible for planning movements (known as the pre-motor area), and it comes up with a set of motions, allowing you to turn the handle with your right hand and open the door.

However, this is not necessarily a simple process for the brain. For instance, how do we end up turning the door handle with our right hand, instead of just hitting it with our left? During this analysis, the brain is bombarded with a lot of irrelevant information, so it relies on a control system to filter out unnecessary information. In the visual system, this control mechanism is known as center surround inhibition and it works by activating only the neurons that are required for further action. In other words, if any extra neurons are turned on, this control mechanism will shut them off, so that the brain can focus on the relevant information. Although the center surround inhibition system has been well documented in the visual system, it was not known if this type of control mechanism exists in the motor regions of the brain. Psychologist Daniel Loach from Macquarie University in Sydney and his colleagues conducted a set of experiments to explore inhibitory mechanism in the areas of the brain involved in planning movements.

A group of participants were successively shown two door handles and had to press a left or right button which corresponded to the texture (either wood or metal) of the second handle. Some of the pairs had both of the handles in the same orientation, in other pairs the two handles would be rotated at varying angles. In addition, the researchers noted which hand was used to make the response— if it was compatible or incompatible with the direction the handle was facing (e.g. the right hand was compatible for handles that were facing right).

The results show that the participants were faster to respond with the compatible than with the incompatible hand if both the handles shared an identical orientation; if the two handles were at slightly different angles, the response time with the compatible hand was much slower. When the two handles were angled 60 away from each other, response times were similar for both the compatible and incompatible hands. These esults suggest that when we see an object, a number of motor programs in the brain are involuntarily activated (each with a different potential movement we can make), which all compete with one another. One program emerges as the winner of the competition and is ready to be implemented while the other programs (which would result in erroneous movements) are inhibited.

These results indicate that there is a common mechanism which acts in both perception and movement. These findings also tell us how information travels throughout the brain and how the motor system and visual system interact. The authors note that these results do not only give us information about normal brain functioning, but suggest that deficits with the center surround inhibition mechanism may contribute to poor motor planning and coordination which often accompany autism and schizophrenia.


Story Source:

The above story is based on materials provided by Association for Psychological Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. An Attentional Mechanism for Selecting Appropriate Actions Afforded by Graspable Objects. Psychological Science, December 2008

Cite This Page:

Association for Psychological Science. "How We Make Proper Movements." ScienceDaily. ScienceDaily, 28 December 2008. <www.sciencedaily.com/releases/2008/12/081218122246.htm>.
Association for Psychological Science. (2008, December 28). How We Make Proper Movements. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2008/12/081218122246.htm
Association for Psychological Science. "How We Make Proper Movements." ScienceDaily. www.sciencedaily.com/releases/2008/12/081218122246.htm (accessed April 18, 2014).

Share This



More Mind & Brain News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Study On Artists' Brain Shows They're 'Structurally Unique'

Study On Artists' Brain Shows They're 'Structurally Unique'

Newsy (Apr. 17, 2014) The brains of artists aren't really left-brain or right-brain, but rather have extra neural matter in visual and motor control areas. Video provided by Newsy
Powered by NewsLook.com
Is Apathy A Sign Of A Shrinking Brain?

Is Apathy A Sign Of A Shrinking Brain?

Newsy (Apr. 17, 2014) A recent study links apathetic feelings to a smaller brain. Researchers say the results indicate a need for apathy screening for at-risk seniors. Video provided by Newsy
Powered by NewsLook.com
Are School Dress Codes Too Strict?

Are School Dress Codes Too Strict?

AP (Apr. 16, 2014) Pushing the limits on style and self-expression is a rite of passage for teens and even younger kids. How far should schools go with their dress codes? The courts have sided with schools in an era when school safety is paramount. (April 16) Video provided by AP
Powered by NewsLook.com
Could Even Casual Marijuana Use Alter Your Brain?

Could Even Casual Marijuana Use Alter Your Brain?

Newsy (Apr. 16, 2014) A new study conducted by researchers at Northwestern and Harvard suggests even casual marijuana use can alter your brain. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins