Featured Research

from universities, journals, and other organizations

Defensive Protein Killed Ancient Primate Retroviruses, Research Suggests

Date:
January 6, 2009
Source:
Rockefeller University
Summary:
Retroviruses are the worst sort of guest. Over eons, these molecular parasites have insinuated themselves into their hosts' DNA and caused a ruckus. The poor hosts can't even be rid of the intruders by killing them, because they stubbornly remain after death.

Retroviruses are the worst sort of guest. Over eons, these molecular parasites have insinuated themselves into their hosts’ DNA and caused a ruckus. The poor hosts can’t even be rid of the intruders by killing them, because they stubbornly remain after death.

Related Articles


As much as eight percent of the human genome is littered with a “fossil record” of extinct retroviruses that we have inherited from our ancestors — human and otherwise — who were the original victims of the viruses. That record allows scientists to study what may have killed these ancient viruses, providing clues for fighting those that plague us today, like HIV.

Now researchers from Rockefeller University have revived two groups of long-dead primate retroviruses to study whether defensive proteins that have rapidly evolved in humans and other primate species could kill them. They found that one protein, called TRIM5α, was disappointingly useless. But by scrutinizing the remnants of the extinct viruses found in the reference genomes of chimpanzees and rhesus monkeys, investigators discovered unmistakable signs that a different protein — APOBEC3 — was likely the exterminator. The research was published in PLoS Pathogens.

“It’s a little like finding a fossilized skeleton with a spear through its head. You can be fairly sure of how that individual died,” says Paul Bieniasz, an associate professor and head of the Laboratory of Retrovirology and a scientist at the Aaron Diamond AIDS Research Center. “In this case, we can even do tests to show that the spear wasn’t put there after the individual died. The DNA evidence is clear on that point.”

The investigators reanimated parts of retroviruses that had worked their way into the DNA of old-world primates within the past few million years. They know the rough timeline because the viruses are not found in humans, who diverged from chimps about six million years ago. The goal is to explain why these ancient viruses did not cross over into humans as HIV has and to identify what in humans has defended against them.

Working with pieces of the extinct retroviruses preserved in primate DNA, the researchers compelled a related modern retrovirus, found in mice, to produce the same proteins as its ancient relatives. Bieniasz, postdoctoral fellow David Perez-Caballero and graduate fellow Steven Soll found that one defensive protein — TRIM5α — did not stop the hybrid viruses from infecting other cells, contrary to another lab’s recent findings. Analyzing many of the DNA “fossils” of the retroviruses, however, the researchers found unique mutations that would have caused the viruses to stop reproducing, mutations that are caused by APOBEC3. They showed that the mutations responsible for inactivating the retroviruses varied in both a virus- and species-dependent manner.

So far, the Bieniasz lab has established that APOBEC3 is involved in fighting the retroviruses but not that it singularly killed all of them, or that it is necessarily responsible for preventing the viruses from crossing into humans, who have APOBEC3 proteins of their own.

That’s what the researchers would like to show next, but it doesn’t come easy. “When you’re dealing with something that happened millions of years ago, it’s tough to demonstrate an extinction event in the laboratory,” Soll says.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Perez-Caballero et al. Evidence for Restriction of Ancient Primate Gammaretroviruses by APOBEC3 but Not TRIM5α Proteins. PLoS Pathogens, 2008; 4 (10): e1000181 DOI: 10.1371/journal.ppat.1000181

Cite This Page:

Rockefeller University. "Defensive Protein Killed Ancient Primate Retroviruses, Research Suggests." ScienceDaily. ScienceDaily, 6 January 2009. <www.sciencedaily.com/releases/2008/12/081227223102.htm>.
Rockefeller University. (2009, January 6). Defensive Protein Killed Ancient Primate Retroviruses, Research Suggests. ScienceDaily. Retrieved October 25, 2014 from www.sciencedaily.com/releases/2008/12/081227223102.htm
Rockefeller University. "Defensive Protein Killed Ancient Primate Retroviruses, Research Suggests." ScienceDaily. www.sciencedaily.com/releases/2008/12/081227223102.htm (accessed October 25, 2014).

Share This



More Fossils & Ruins News

Saturday, October 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Deep Sea 'mushroom' Could Be Early Branch on Tree of Life

Reuters - Innovations Video Online (Oct. 24, 2014) Miniature deep sea animals discovered off the Australian coast almost three decades ago are puzzling scientists, who say the organisms have proved impossible to categorise. Academics at the Natural History of Denmark have appealed to the world scientific community for help, saying that further information on Dendrogramma enigmatica and Dendrogramma discoides could answer key evolutionary questions. Jim Drury has more. Video provided by Reuters
Powered by NewsLook.com
Fossil Treasures at Risk in Morocco Desert Town

Fossil Treasures at Risk in Morocco Desert Town

AFP (Oct. 23, 2014) Hundreds of archeological jewels in and around the town of 30,000 people prompt geologists and archeologists to call the Erfoud area "the largest open air fossil museum in the world". Duration: 02:17 Video provided by AFP
Powered by NewsLook.com
Oldest Bone Ever Sequenced Shows Human/Neanderthal Mating

Oldest Bone Ever Sequenced Shows Human/Neanderthal Mating

Newsy (Oct. 23, 2014) A 45,000-year-old thighbone is showing when humans and neanderthals may have first interbred and revealing details about our origins. Video provided by Newsy
Powered by NewsLook.com
Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Weird-Looking Dinosaur Solves 50-Year-Old Mystery

Newsy (Oct. 23, 2014) You've probably seen some weird-looking dinosaurs, but have you ever seen one this weird? It's worth a look. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Plants & Animals

Earth & Climate

Fossils & Ruins

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins