Featured Research

from universities, journals, and other organizations

Simply Weird Stuff: Making Supersolids With Ultracold Gas Atoms

Date:
January 14, 2009
Source:
National Institute of Standards and Technology (NIST)
Summary:
Physicists have proposed a recipe for manipulating ultracold mixtures of atoms into a "supersolid," an exotic state of matter that behaves simultaneously as a solid and a friction-free superfluid.

This is an artistic rendition of a supersolid made from two different types of ultracold atoms. The atoms are arranged in a regularly repeating pattern like a solid, but also can move frictionlessly like a superfluid. Yellow shape represents the electrical forces that the atoms feel, which vary in a regular pattern. Correspondingly. the density of the atoms (represented by the thickness of the spheres) also varies in a periodic fashion.
Credit: Ludwig Mathey, NIST/JQI

Physicists at the Joint Quantum Institute (JQI) of the National Institute of Standards and Technology (NIST) and the University of Maryland have proposed a recipe for turning ultracold “boson” atoms—the ingredients of Bose-Einstein condensates—into a “supersolid,” an exotic state of matter that behaves simultaneously as a solid and a friction-free superfluid.

While scientists have found evidence for supersolids in complex liquid helium mixtures, a supersolid formed from such weakly interacting gas atoms would be simpler to understand, potentially providing clues for making a host of new “quantum materials” whose bizarre properties could expand physicists’ notions of what is possible with matter.

First theorized in 1970, a supersolid displays the essential characteristics of a solid, with atoms arranged in regularly repeating patterns like that of a crystal lattice, and of a superfluid, with the particles flowing frictionlessly and without losing any energy. Able to exist only at low temperatures, a supersolid behaves very differently from objects in the everyday world.

“If you add more clothing to a spinning washing machine, you increase the mass of its rim, and the machine needs to exert a greater force to make the wheel reverse direction,” explains lead author Ludwig Mathey. “But in a supersolid washing machine, some of the clothes would mysteriously hover in space, staying stationary as the washer spins and making it easier for the wheel to reverse direction. Moreover, these hovering, frictionless clothes would form a predictable pattern—such as frictionless socks alternating with frictionless shirts—just as atoms arrange themselves in a repeating pattern in a crystal.”

In 2004, Moses Chan and Eun-Seong Kim of Pennsylvania State University published a groundbreaking experiment on helium at low temperatures and gathered evidence for a supersolid phase. However, the interpretation of their observations has considerable uncertainties due to the complex nature of the particular system used in their experiments.

Now physicists Ludwig Mathey, Ippei Danshita and Charles Clark have identified a technique for making a simpler-to-understand supersolid, using two species of ultracold atoms confined in an optical lattice, a “web of light” that traps atoms in regular positions. In a paper to be published in Physical Review A, the JQI team identifies conditions under which a cloud of ultracold atoms of two species (such as rubidium and sodium, or two slightly different forms of rubidium) can spontaneously condense into a state in which there is crystalline structure in the relative positions of atoms, e.g. a chain in which the two different types of atoms alternate regularly, but in which the entire cloud exhibits the frictionless, superfluid properties of a Bose-Einstein condensate (BEC). This remains hard to visualize in familiar terms—the accompanying image shows an artist’s conception of it—but the team identified clear experimental signatures (essentially photographs of the cloud), which could verify the simultaneous existence of these two seemingly incompatible properties.

The underlying technologies of optical lattices and Bose-Einstein condensation were pioneered at NIST and have sparked a renaissance in atomic physics with applications to NIST’s fundamental measurement missions, such as time and frequency standards and improved sensors of magnetic and gravitational forces. The supersolid is an example of a further direction of research in ultracold atomic physics: the design of quantum materials with fundamental properties not previously found in familiar matter.


Story Source:

The above story is based on materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.


Journal Reference:

  1. Mathey et al. Creating a supersolid in one-dimensional Bose mixtures. Physical Review A, 2009; 79 (1): 011602 DOI: 10.1103/PhysRevA.79.011602

Cite This Page:

National Institute of Standards and Technology (NIST). "Simply Weird Stuff: Making Supersolids With Ultracold Gas Atoms." ScienceDaily. ScienceDaily, 14 January 2009. <www.sciencedaily.com/releases/2009/01/090113174617.htm>.
National Institute of Standards and Technology (NIST). (2009, January 14). Simply Weird Stuff: Making Supersolids With Ultracold Gas Atoms. ScienceDaily. Retrieved September 19, 2014 from www.sciencedaily.com/releases/2009/01/090113174617.htm
National Institute of Standards and Technology (NIST). "Simply Weird Stuff: Making Supersolids With Ultracold Gas Atoms." ScienceDaily. www.sciencedaily.com/releases/2009/01/090113174617.htm (accessed September 19, 2014).

Share This



More Matter & Energy News

Friday, September 19, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Virtual Reality Headsets Unveiled at Tokyo Game Show

Virtual Reality Headsets Unveiled at Tokyo Game Show

AFP (Sep. 18, 2014) Several companies unveiled virtual reality headsets at the Tokyo Game Show, Asia's largest digital entertainment exhibition. Duration: 00:48 Video provided by AFP
Powered by NewsLook.com
Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Apple's iOS8 Includes New 'Killswitch' To Curb Theft

Newsy (Sep. 18, 2014) Apple's new operating system, iOS 8, comes with Apple's killswitch feature already activated, unlike all the models before it. Video provided by Newsy
Powered by NewsLook.com
Stocks Hit All-Time High as Fed Holds Steady

Stocks Hit All-Time High as Fed Holds Steady

AP (Sep. 17, 2014) The Federal Reserve signaled Wednesday that it plans to keep a key interest rate at a record low because a broad range of U.S. economic measures remain subpar. Stocks hit an all-time high on the news. (Sept. 17) Video provided by AP
Powered by NewsLook.com
Space Race Pits Bezos Vs Musk

Space Race Pits Bezos Vs Musk

Reuters - Business Video Online (Sep. 16, 2014) Amazon CEO Jeff Bezos' startup will team up with Boeing and Lockheed to develop rocket engines as Elon Musk races to have his rockets certified. Fred Katayama reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins