Featured Research

from universities, journals, and other organizations

Silicon Chip Manufacture: Flat Fixtures For EUV Exposure

Date:
January 23, 2009
Source:
Fraunhofer-Gesellschaft
Summary:
Exposing silicon wafers to light during chip manufacture requires special fixtures called chucks. Novel electrostatic chucks made of glass ceramics are incredibly flat. This prevents structural distortions on the exposure mask and the silicon chip.

The EUV mask chuck will support the manufacture of silicon chips in the future: It holds the bent exposure mask in place overhead and almost perfectly levels it.
Credit: Copyright Fraunhofer IOF

Exposing silicon wafers to light during chip manufacture requires special fixtures called chucks. Novel electrostatic chucks made of glass ceramics are incredibly flat. This prevents structural distortions on the exposure mask and the silicon chip.

Smaller, even smaller, tiny. Miniaturization in chip manufacture is progressing at an impressive pace. Researchers continue to push the physical limits of semiconductor technology and are developing methods of making circuit elements even smaller and faster. At the same time, the associated processes are having to meet increasingly high requirements.

The experts predict a promising future for EUV lithography – lithography with extremely shortwave ultraviolet light. This works as follows: Light with a wavelength of 13 nanometers is guided through a reflection mask onto the silicon wafers, where it generates nanometer structures. As the exposure processes take place in a vacuum, special fixtures are necessary to accommodate the silicon wafers and the exposure mask, and to hold them firmly in place. The technical term for these is chucks.

Researchers at the Fraunhofer Institute for Applied Optics and Precision Engineering IOF have developed exceptionally precise electrostatic chucks for EUV lithography. “The chucks need to be extremely smooth and even,” says Fraunhofer IOF scientist Dr. Gerhard Kalkowski. “If they are not super-flat, the result is height deviations in the mask, which lead to structural distortions on the silicon chips.” The IOF researchers are using special glass materials and have developed new technologies to increase the levelness of the chucks, with excellent results: While height deviations of over 100 nanometers had been measured previously, the new material reduced them to 74 nanometers, setting a new record. The chuck and the mask virtually merge into a single plane. The IOF chucks also have other advantages: “The material guarantees high holding strengths, distributed across the entire surface, and reduces abrasion,” says Kalkowski. Two properties of great importance to the EUV exposure process.

The researchers’ findings will greatly benefit the chip industry, as chip manufacturers rely particularly on the stability and precision of the chucks in order to be able to use EUV lithography in mass production. Meanwhile, the IOF researchers are working towards their next goal: flatter than 50 nanometers.


Story Source:

The above story is based on materials provided by Fraunhofer-Gesellschaft. Note: Materials may be edited for content and length.


Cite This Page:

Fraunhofer-Gesellschaft. "Silicon Chip Manufacture: Flat Fixtures For EUV Exposure." ScienceDaily. ScienceDaily, 23 January 2009. <www.sciencedaily.com/releases/2009/01/090119081352.htm>.
Fraunhofer-Gesellschaft. (2009, January 23). Silicon Chip Manufacture: Flat Fixtures For EUV Exposure. ScienceDaily. Retrieved October 2, 2014 from www.sciencedaily.com/releases/2009/01/090119081352.htm
Fraunhofer-Gesellschaft. "Silicon Chip Manufacture: Flat Fixtures For EUV Exposure." ScienceDaily. www.sciencedaily.com/releases/2009/01/090119081352.htm (accessed October 2, 2014).

Share This



More Matter & Energy News

Thursday, October 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins