Featured Research

from universities, journals, and other organizations

Novel Approach To Create High-density Magnetic Data Storage

Date:
February 3, 2009
Source:
Forschungszentrum Dresden Rossendorf
Summary:
In order to achieve higher storage densities on computer disks, the last decades were dominated by optimization of magnetic materials, i.e. the magnetic particles (grains) were gradually shrunk while, at the same time, the magnetic stability (magnetic anisotropy) was increased. Usually, about 100 to 600 grains form one bit, i.e. currently the smallest storage unit.

An originally ordered binary alloy (white and red atoms) is disordered by means of focused ion irradiation (visualized as blue spheres in the 3D sketch). The disordered phase is magnetic and hence produces a magnetic field with north and south pole, similar to a bar magnet. The arrangement of north and south pole is used to store the information.
Credit: Image courtesy of Forschungszentrum Dresden Rossendorf

In order to achieve higher storage densities on computer disks, the last decades were dominated by optimization of magnetic materials, i.e. the magnetic particles (grains) were gradually shrunk while, at the same time, the magnetic stability (magnetic anisotropy) was increased.

Related Articles


Usually, about 100 to 600 grains form one bit, i.e. currently the smallest storage unit. Each grain is about 10 nanometers in size. These grains are arranged next to each other on glass substrates that are plated with cobalt, chrome, and platinum. Both the size and amount of the grains necessary for one bit could not be decreased further without decreasing the signal/noise ratio. Weaker signals could even be accompanied by loss of information. Therefore, new concepts of magnetic storage have to be found.

Physicists from the research centre Forschungszentrum Dresden-Rossendorf / FZD (Germany), the Universidad Autonoma de Barcelona (Spain) and further research institutions were able to generate magnetic areas which promise to overcome the obstacles of today’s data storage technology. Using a highly focused ion beam, i.e. fast charged atoms, they irradiated an iron-aluminum alloy in such a way that only the treated zones became ferromagnetic. As the ion beam is focused to a size of only a few nanometers and the ion dose is rather low, the created nanozones are extremely flat and significantly less than 100 nanometers in diameter.

The read/write heads of personal computer disks fly above the hard disks at a distance of 20 nanometers. Conventional technologies for structuring material surfaces on the nanoscale result in corrugated surfaces. These technologies are not suitable for hard disks because the generated bumpy nanostructures would interfere with the read/write heads and might finally destroy the disk.

The new superflat nanomagnets, however, fulfill all requirements concerning a new concept for magnetic data storage. In the future, each of these nanomagnets could serve as one bit, provided that they could be produced in parallel on large areas via lithographic techniques, and shrunk in size down to about 30 nanometers. “We are now working on the magnetic stability of our nanomagnets. Its increase would be a further step with respect to future industrial exploitation”, says Dr. Jόrgen Fassbender, scientist at FZD.


Story Source:

The above story is based on materials provided by Forschungszentrum Dresden Rossendorf. Note: Materials may be edited for content and length.


Journal Reference:

  1. Menιndez et al. Direct Magnetic Patterning due to the Generation of Ferromagnetism by Selective Ion Irradiation of Paramagnetic FeAl Alloys. Small, 2009; 5 (2): 229 DOI: 10.1002/smll.200800783

Cite This Page:

Forschungszentrum Dresden Rossendorf. "Novel Approach To Create High-density Magnetic Data Storage." ScienceDaily. ScienceDaily, 3 February 2009. <www.sciencedaily.com/releases/2009/01/090129090000.htm>.
Forschungszentrum Dresden Rossendorf. (2009, February 3). Novel Approach To Create High-density Magnetic Data Storage. ScienceDaily. Retrieved March 30, 2015 from www.sciencedaily.com/releases/2009/01/090129090000.htm
Forschungszentrum Dresden Rossendorf. "Novel Approach To Create High-density Magnetic Data Storage." ScienceDaily. www.sciencedaily.com/releases/2009/01/090129090000.htm (accessed March 30, 2015).

Share This


More From ScienceDaily



More Computers & Math News

Monday, March 30, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Facebook Building Plane-Sized Drones For Global Internet

Facebook Building Plane-Sized Drones For Global Internet

Newsy (Mar. 27, 2015) — Facebook on Thursday revealed more details about its Internet-connected drone project. The drone is bigger than a 737, but lighter than a car. Video provided by Newsy
Powered by NewsLook.com
Robot Returns from International Space Station and Sets Two Guinness World Records

Robot Returns from International Space Station and Sets Two Guinness World Records

Reuters - Light News Video Online (Mar. 27, 2015) — The companion robot "Kirobo" returns to earth from the International Space Station and sets two Guinness World Records. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Smart Bracelet Changes Design With the Touch of a Button

Smart Bracelet Changes Design With the Touch of a Button

Reuters - Innovations Video Online (Mar. 27, 2015) — Interactive jewellery that allows users to change designs and doesn&apos;t need charging. Sharon Reich reports. Video provided by Reuters
Powered by NewsLook.com
Twitter's Periscope New Rival for Meerkat

Twitter's Periscope New Rival for Meerkat

Reuters - Business Video Online (Mar. 26, 2015) — Twitter has unveiled Periscope, its live-streaming app to rival Meerkat and other emerging apps that have captured the attention of the social media industry. Bobbi Rebell reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins