Featured Research

from universities, journals, and other organizations

Molecular Target For Treatment Of West Nile Encephalitis Identified Through Studies In Mice

Date:
February 6, 2009
Source:
Cedars-Sinai Medical Center
Summary:
In animal studies, researchers have identified molecular interactions that govern the immune system's ability to defend the brain against West Nile virus, offering the possibility that drug therapies could be developed to improve success in treating West Nile and other viral forms of encephalitis. Critical mechanism enables blood-borne immune cells to sense West Nile virus and to neutralize and clear the infection in the brain.

In animal studies, researchers at Cedars-Sinai Medical Center and Yale University have identified molecular interactions that govern the immune system's ability to defend the brain against West Nile virus, offering the possibility that drug therapies could be developed to improve success in treating West Nile and other viral forms of encephalitis, a brain inflammation illness that strikes healthy adults and the elderly and immunocompromised.

Related Articles


In a series of laboratory experiments and studies in mice, the research team found that a specific molecule and "signaling pathway" are critical in detecting West Nile virus and recruiting specialized immune cells that home to and clear infected cells. In mice genetically engineered to lack this molecular pathway, immune cells were detected at a distance but they did not home to brain cells infected by the virus, according to an article published online Feb. 5 in the Cell Press journal Immunity.

The key molecule in this process is Toll-like receptor 7, part of the innate immune system that recognizes pathogens entering the body and activates immune cell responses. Effective signaling is dependent on interleukin 23, a protein that stimulates an inflammatory response against infection. In West Nile encephalitis, according to these studies, Toll-like receptor 7 enables macrophages – immune system cells circulating in the blood – to sense the brain-penetrating virus. These macrophages then respond to interleukin 23 produced in the brain. This brain signal in turn promotes their infiltration and homing from the blood into the brain, where they neutralize and clear the virus.

Transmitted to humans by mosquitoes, West Nile virus is the most common cause of epidemic viral encephalitis in North America and has become a worldwide public health concern. While most healthy people who contract the virus have few if any symptoms, an infection can result in life-threatening brain disease – particularly in the elderly and those with compromised immune systems.

"There is no approved therapy for West Nile encephalitis in humans, in part because the mechanisms of the immune response to the virus are not completely understood. Our results suggest that drug therapy aimed at promoting this signaling pathway may enhance the immune response and thereby promote clearance of this potentially deadly virus," said Terrence Town, Ph.D., one of the article's lead authors and a research scientist at Cedars-Sinai's Maxine Dunitz Neurosurgical Institute. Town is an associate professor in the Department of Neurosurgery and the Department of Biomedical Sciences at Cedars-Sinai Medical Center. He holds the Ben Winters Endowed Chair in Regenerative Medicine at Cedars-Sinai.

Contributors to this study are supported by the National Institutes of Health and other grants. Town's research program is funded by the National Institutes of Health/National Institute on Aging and the Alzheimer's Association.


Story Source:

The above story is based on materials provided by Cedars-Sinai Medical Center. Note: Materials may be edited for content and length.


Journal Reference:

  1. Tlr7 mitigates lethal West Nile encephalitis via interleukin 23-dependent immune cell infiltration and homing. Immunity, Feb. 5, 2009

Cite This Page:

Cedars-Sinai Medical Center. "Molecular Target For Treatment Of West Nile Encephalitis Identified Through Studies In Mice." ScienceDaily. ScienceDaily, 6 February 2009. <www.sciencedaily.com/releases/2009/02/090205133738.htm>.
Cedars-Sinai Medical Center. (2009, February 6). Molecular Target For Treatment Of West Nile Encephalitis Identified Through Studies In Mice. ScienceDaily. Retrieved December 22, 2014 from www.sciencedaily.com/releases/2009/02/090205133738.htm
Cedars-Sinai Medical Center. "Molecular Target For Treatment Of West Nile Encephalitis Identified Through Studies In Mice." ScienceDaily. www.sciencedaily.com/releases/2009/02/090205133738.htm (accessed December 22, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Monday, December 22, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Touch-Free Smart Phone Empowers Mobility-Impaired

Touch-Free Smart Phone Empowers Mobility-Impaired

Reuters - Innovations Video Online (Dec. 21, 2014) A touch-free phone developed in Israel enables the mobility-impaired to operate smart phones with just a movement of the head. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Earthworms Provide Cancer-Fighting Bacteria

Earthworms Provide Cancer-Fighting Bacteria

Reuters - Innovations Video Online (Dec. 21, 2014) Polish scientists isolate bacteria from earthworm intestines which they say may be used in antibiotics and cancer treatments. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Existing Chemical Compounds Could Revive Failing Antibiotics, Says Danish Scientist

Reuters - Innovations Video Online (Dec. 21, 2014) A team of scientists led by Danish chemist Jorn Christensen says they have isolated two chemical compounds within an existing antipsychotic medication that could be used to help a range of failing antibiotics work against killer bacterial infections, such as Tuberculosis. Jim Drury went to meet him. Video provided by Reuters
Powered by NewsLook.com
Hugging It Out Could Help You Ward Off A Cold

Hugging It Out Could Help You Ward Off A Cold

Newsy (Dec. 21, 2014) Carnegie Mellon researchers found frequent hugs can help people avoid stress-related illnesses. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins