Featured Research

from universities, journals, and other organizations

Adult Stem Cells Convert Into Embryonic-like Stem Cells, With Single Factor

Date:
February 6, 2009
Source:
Cell Press
Summary:
The simple recipe scientists earlier discovered for making adult stem cells behave like embryonic-like stem cells just got even simpler. A new report shows for the first time that neural stem cells taken from adult mice can take on the characteristics of embryonic stem cells with the addition of a single transcription factor. Transcription factors are genes that control the activity of other genes.

The simple recipe scientists earlier discovered for making adult stem cells behave like embryonic-like stem cells just got even simpler. A new report in the February 6th issue of the journal Cell shows for the first time that neural stem cells taken from adult mice can take on the characteristics of embryonic stem cells with the addition of a single transcription factor. Transcription factors are genes that control the activity of other genes.

Related Articles


The discovery follows a 2006 report also in the journal Cell that showed that the introduction of four ingredients could transform differentiated cells taken from adult mice into "induced pluripotent stem cells" (iPS) with the physical, growth, and genetic characteristics typical of embryonic stem cells. Pluripotent refers to the ability to differentiate into most other cell types. The same recipe was later shown to work with human skin cells as well.

Subsequent studies found that the four-ingredient recipe could in some cases be pared down to just two or three essential ingredients, said Hans Schöler of the Max Planck Institute for Molecular Biomedicine in Germany. "Now we've come down to just one that is sufficient. In terms of the biology, it's really quite amazing."

The discovery sheds light on centuries-old questions about what distinguishes the embryonic stem cells that give rise to egg and sperm from other body cells, Schöler said. It might also have implications for the use of reprogrammed stem cells for replacing cells lost to disease or injury.

Other researchers led by Shinya Yamanaka showed that adult cells could be reprogrammed by adding four factors – specifically Oct4, Sox2, Klf4, and c-Myc. Recently, Schöler and his colleagues demonstrated that Oct4 and Klf4 are sufficient to induce pluripotency in neural stem cells.

By omitting Klf4 in the new study, they have now established that Oct4 is the "driving force" behind the conversion of the neural stem cells into iPS cells. The lone transcription factor is not only essential, but it is also sufficient to make neural stem cells pluripotent.

Those cells, which Schöler's team calls "1F iPS" can differentiate into all three germ layers. Those primary germ layers in embryos eventually give rise to all the body's tissues and organs. Not only can those cells efficiently differentiate into neural stem cells, heart muscle cells, and germ cells, they show, but they are also capable of forming tumors when injected under the skin of nude mice. Those tumors, or teratomas, contain tissue representing all three germ layers. When injected into mouse embryos, the 1F iPS cells also found their way into the animals' developing organs and were able to be transmitted through the germ line to the next generation, they report.

The results show that adult stem cells can be made pluripotent without c-Myc and Klf4, both of which are "bona fide" oncogenes that can help turn normal cells into cancer cells, Schöler said. Limiting the number of factors is also a bonus because it means fewer genes must be inserted into the genome, where they can potentially have detrimental effects.

"Strikingly, Oct4 alone is sufficient to induce pluripotency in neural stem cells, which demonstrates its crucial role in the process of reprogramming…" the researchers concluded. "Future studies will show whether other sources of neural stem or progenitor cell populations such as mouse or human bone marrow-derived mesenchymal stem cells or dental pulp can be reprogrammed to iPS cells and whether expression of Oct4 can be induced by non-retroviral means, a prerequisite for the generation of iPS cells of therapeutic value."

The researchers include Jeong Beom Kim, Max Planck Institute for Molecular Biomedicine, Munster, Germany; Vittorio Sebastiano, Max Planck Institute for Molecular Biomedicine, Munster, Germany; Guangming Wu, Max Planck Institute for Molecular Biomedicine, Munster, Germany; Marcos J. Arauzo-Bravo, Max Planck Institute for Molecular Biomedicine, Munster, Germany; Philipp Sasse, University of Bonn, Bonn, Germany; Luca Gentile, Max Planck Institute for Molecular Biomedicine, Munster, Germany; Kinarm Ko, Max Planck Institute for Molecular Biomedicine, Munster, Germany; David Ruau, RWTH Aachen University Medical School, Aachen, Germany; Mathias Ehrich, SEQUENOM Inc., San Diego, CA; Dirk van den Boom, SEQUENOM Inc., San Diego, CA; Johann Meyer, Hannover Medical School, Hannover, Germany; Karin Hubner, Max Planck Institute for Molecular Biomedicine, Munster, Germany; Christof Bernemann, Max Planck Institute for Molecular Biomedicine, Munster, Germany; Claudia Ortmeier, Max Planck Institute for Molecular Biomedicine, Munster, Germany; Martin Zenke, RWTH Aachen University Medical School, Aachen, Germany; Bernd K. Fleischmann, University of Bonn, Bonn, Germany; Holm Zaehres, Max Planck Institute for Molecular Biomedicine, Munster, Germany; and Hans R. Scholer, Max Planck Institute for Molecular Biomedicine, Munster, Germany.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Adult Stem Cells Convert Into Embryonic-like Stem Cells, With Single Factor." ScienceDaily. ScienceDaily, 6 February 2009. <www.sciencedaily.com/releases/2009/02/090205133744.htm>.
Cell Press. (2009, February 6). Adult Stem Cells Convert Into Embryonic-like Stem Cells, With Single Factor. ScienceDaily. Retrieved November 26, 2014 from www.sciencedaily.com/releases/2009/02/090205133744.htm
Cell Press. "Adult Stem Cells Convert Into Embryonic-like Stem Cells, With Single Factor." ScienceDaily. www.sciencedaily.com/releases/2009/02/090205133744.htm (accessed November 26, 2014).

Share This


More From ScienceDaily



More Health & Medicine News

Wednesday, November 26, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Pet Dogs to Be Used in Anti-Ageing Trial

Pet Dogs to Be Used in Anti-Ageing Trial

Reuters - Innovations Video Online (Nov. 26, 2014) — Researchers in the United States are preparing to discover whether a drug commonly used in human organ transplants can extend the lifespan and health quality of pet dogs. Video provided by Reuters
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) — Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com
From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

From Popcorn To Vending Snacks: FDA Ups Calorie Count Rules

Newsy (Nov. 25, 2014) — The US FDA is announcing new calorie rules on Tuesday that will require everywhere from theaters to vending machines to include calorie counts. Video provided by Newsy
Powered by NewsLook.com
Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Daily Serving Of Yogurt Could Reduce Risk Of Type 2 Diabetes

Newsy (Nov. 25, 2014) — Need another reason to eat yogurt every day? Researchers now say it could reduce a person's risk of developing type 2 diabetes. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins