Featured Research

from universities, journals, and other organizations

Towards A New Generation Of Materials

Date:
February 19, 2009
Source:
Madrid Institute of Advanced Studies in Materials
Summary:
Scientists have developed a mechanical method to generate and stabilize at room temperature and atmospheric pressure crystalline phases of metals that until now have only been stable at very high pressures.

Scientists from the Instituto Madrileńo de Estudios Avanzados en Materiales [Madrid Institute of Advanced Studies in Materials] (IMDEA Materiales) – in collaboration with a research group from CENIM, CSIC and the Iskra institute of Ufa, Russia – have developed a mechanical method to generate and stabilise at room temperature and atmospheric pressure crystalline phases of metals that until now have only been stable at very high pressures.

The atoms of metals are organized in ordered structures denominated crystal lattices. The geometry of the latter depends of the nature of the material as well as of temperature and pressure. At room temperature and atmospheric pressure, pure metals like gold, aluminium and copper have cubic lattices, and others like magnesium, titanium and zirconium have hexagonal structures (called alpha phases, a).

Increases in pressure occasionally cause changes in the geometry of the crystal lattice, resulting in the appearance of new phases. For example, in the case of titanium, the hexagonal a lattice, stable at 1 atm, transforms into a cubic structure (beta phase) when a hydrostatic pressure of approximately 1 million atmospheres is applied. If, once the cubic phase has been generated, the pressure is reduced down to 1 atm, the reverse transformation takes place, giving rise to the original hexagonal a phase. Due to the extreme pressure conditions needed to generate these new phases, the practical applications of these materials are very limited.

Scientists from (IMDEA Materiales) – in collaboration with the Centro Nacional de Investigaciones Metalúrgicas [National Centre for Metallurgical Research] (CENIM) and the Iskra institute of Ufa, Russia – have developed a mechanical method to stabilise at room temperature and atmospheric pressure crystalline phases of metals that until now have only been stable at very high pressure. The method is based on simultaneously applying compression and shear strains. It has been proven that shear enhances the transformation kinetics significantly, eliminating the need for very high pressures. This technique has been successfully applied to pure titanium and zirconium and a patent application has been filed.

The high-pressure phases could have properties of great technological interest. For example, cubic titanium (beta phase) is very attractive for manufacturing bone implants, since its elastic modulus is more similar to bone than hexagonal titanium. Moreover, it is known that the critical superconducting temperature of beta titanium is also higher. This research therefore represents a first step towards manufacturing a new generation of materials with as yet unknown properties and opens the doors to their practical application.

 


Story Source:

The above story is based on materials provided by Madrid Institute of Advanced Studies in Materials. Note: Materials may be edited for content and length.


Cite This Page:

Madrid Institute of Advanced Studies in Materials. "Towards A New Generation Of Materials." ScienceDaily. ScienceDaily, 19 February 2009. <www.sciencedaily.com/releases/2009/02/090210134442.htm>.
Madrid Institute of Advanced Studies in Materials. (2009, February 19). Towards A New Generation Of Materials. ScienceDaily. Retrieved April 18, 2014 from www.sciencedaily.com/releases/2009/02/090210134442.htm
Madrid Institute of Advanced Studies in Materials. "Towards A New Generation Of Materials." ScienceDaily. www.sciencedaily.com/releases/2009/02/090210134442.htm (accessed April 18, 2014).

Share This



More Matter & Energy News

Friday, April 18, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Small Reactors Could Be Future of Nuclear Energy

Small Reactors Could Be Future of Nuclear Energy

AP (Apr. 17, 2014) — After the Fukushima nuclear disaster, the industry fell under intense scrutiny. Now, small underground nuclear power plants are being considered as the possible future of the nuclear energy. (April 17) Video provided by AP
Powered by NewsLook.com
Horseless Carriage Introduced at NY Auto Show

Horseless Carriage Introduced at NY Auto Show

AP (Apr. 17, 2014) — An electric car that proponents hope will replace horse-drawn carriages in New York City has also been revealed at the auto show. (Apr. 17) Video provided by AP
Powered by NewsLook.com
Honda's New ASIMO Robot, More Human-Like Than Ever

Honda's New ASIMO Robot, More Human-Like Than Ever

AFP (Apr. 17, 2014) — It walks and runs, even up and down stairs. It can open a bottle and serve a drink, and politely tries to shake hands with a stranger. Meet the latest ASIMO, Honda's humanoid robot. Duration: 00:54 Video provided by AFP
Powered by NewsLook.com
German Researchers Crack Samsung's Fingerprint Scanner

German Researchers Crack Samsung's Fingerprint Scanner

Newsy (Apr. 16, 2014) — German researchers have used a fake fingerprint made from glue to bypass the fingerprint security system on Samsung's new Galaxy S5 smartphone. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins