Featured Research

from universities, journals, and other organizations

Next Generation Digital Maps Are Laser Sharp

Date:
February 23, 2009
Source:
Boston College
Summary:
New airborne laser elevation, or lidar, surveys of the earth provide a 10-fold improvement in the precision of digital topographical maps, geologists report. This revolution in mapping will soon benefit anyone who relies on map data for work or recreation.

The dynamics of rivers and streams can be more clearly identified using new laser-guided mapping technology, or lidar. This figure shows a segment of Maine’s Sheepscot River in a traditional digital topographic contour map (a); a lidar map (b); and the identification of Atlantic salmon spawning habitat (c). Airborne lidar mapping provides far greater resolution and allows researchers to connect the slope of the river with spawning habitat.
Credit: American Geophysical Union

Restoring habitat for spawning species of fish, such as Atlantic salmon, starts with a geological inventory of suitable rivers and streams, and the watershed systems that support them. But the high-tech mapping tools available to geologists and hydrologists have had their limits.

Now, lasers beamed from planes overhead are adding greater clarity to mapping streams and rivers and interpreting how well these bodies of water can help maintain or expand fish stocks, according to a new study.

"It's kind of like going from your backyard telescope to the Hubble telescope," says Boston College Geologist Noah P. Snyder. "Restoring fish habitat is just one example. For the fisherman, backpacker, forester, land use planner or developer – anyone who uses map data – this new technology is the next revolution in mapping."

Airborne laser elevation (or lidar) surveys provide a 10-fold improvement in the precision with which topographical features are measured.

Lidar represents the latest technology to improve digital topographical maps – known as digital elevation models, or DEMs. Pulsing laser beams released by a lidar device from a plane overhead bounce off of rocks, trees, soil, even water, and send signals back to the device, which makes topographical calculations based on the time it takes the laser signal to return at the speed of light.

Hundreds of beams produce a dynamic topographical picture, Snyder says. In the case of streams and rivers, the technology means that channel features such as water surface, bank edges, floodplains, even the slope of a stream, can be measured, he reports in the journal.

In addition, lidar provides new types of data about the vegetation that covers a particular watershed, such as the height and density of the tree canopy, Snyder says.

"We can look at much finer scale features in streams using a remote mapping technique, as opposed to field work over the entire lengths of streams," says Snyder, chairman of the steering committee of the National Center for Airborne Laser Mapping. "Digitally, we can now connect topographical features to habitat characteristics or the habitat that needs to be restored."

That means geologists and other earth scientists will be able to digitally search large swaths of lidar-mapped territory for a particular feature of interest – like salmon habitat or particularly steep sections of streams – then narrow down likely candidates for field study.

"I don't think this will replace field investigations, but it will allow us to better focus our field investigations," says Snyder, an expert in river geology, with a particular focus on restoration.

DEM technology, which digitized topographical maps in the early 1990s, led to breakthroughs in research ranging from the relationship between hillside and stream processes to the response of rivers to climate change. But the technology did reveal some limits, such as difficult profiling relatively smooth landscapes.

Traditional DEMs offer a resolution that provides one measure of elevation value for every 10-square meters of ground. Lidar mapping offers one measure of elevation value for each square meter, reports Snyder, whose research was funded by the National Science Foundation.

The amount of land currently mapped using lidar is gradually expanding. The state of Connecticut is the only stated entirely mapped via lidar. Pennsylvania has embarked on a lidar mapping project. Researchers, government agencies and private companies are increasingly using the technology to speed the creation of the next generation of maps, Snyder says.


Story Source:

The above story is based on materials provided by Boston College. Note: Materials may be edited for content and length.


Journal Reference:

  1. Snyder et al. Studying Stream Morphology With Airborne Laser Elevation Data. Eos Transactions American Geophysical Union, 2009; 90 (6): 45 DOI: 10.1029/2009EO060001

Cite This Page:

Boston College. "Next Generation Digital Maps Are Laser Sharp." ScienceDaily. ScienceDaily, 23 February 2009. <www.sciencedaily.com/releases/2009/02/090212093650.htm>.
Boston College. (2009, February 23). Next Generation Digital Maps Are Laser Sharp. ScienceDaily. Retrieved August 29, 2014 from www.sciencedaily.com/releases/2009/02/090212093650.htm
Boston College. "Next Generation Digital Maps Are Laser Sharp." ScienceDaily. www.sciencedaily.com/releases/2009/02/090212093650.htm (accessed August 29, 2014).

Share This




More Earth & Climate News

Friday, August 29, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Raw: Volcano Erupts on Papua New Guinea

Raw: Volcano Erupts on Papua New Guinea

AP (Aug. 29, 2014) Several communities were evacuated and some international flights were diverted on Friday after one of the most active volcanos in the region erupts. (Aug. 29) Video provided by AP
Powered by NewsLook.com
Killer Amoeba Found in Louisiana Water System

Killer Amoeba Found in Louisiana Water System

AP (Aug. 28, 2014) State health officials say testing has confirmed the presence of a killer amoeba in a water system serving three St. John the Baptist Parish towns. (Aug. 28) Video provided by AP
Powered by NewsLook.com
Scientists Have Figured Out Why Rocks Move In Death Valley

Scientists Have Figured Out Why Rocks Move In Death Valley

Newsy (Aug. 28, 2014) The mystery of the moving rocks in Death Valley, California, has finally been solved. Scientists are pointing to a combo of water, ice and wind. Video provided by Newsy
Powered by NewsLook.com
Big Waves, Minor Flooding from Hurricane

Big Waves, Minor Flooding from Hurricane

AP (Aug. 27, 2014) Thundering surf spawned by Hurricane Marie pounded the Southern California coast Wednesday, causing minor flooding in a low-lying beach town. High surf warnings were posted for Los Angeles County south through Orange County. (Aug. 27) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins