Featured Research

from universities, journals, and other organizations

Device Aims To Decrease Wait Period For Patients Needing Immunotherapy

Date:
February 20, 2009
Source:
University of Texas M. D. Anderson Cancer Center
Summary:
Researchers have created a device that significantly decreases the time needed to produce genetically manipulated T cells in preclinical tests for leukemia.

Researchers from the Children's Cancer Hospital at The University of Texas M. D. Anderson Cancer Center have created a device that significantly decreases the time needed to produce genetically manipulated T cells in preclinical tests for leukemia.

Paul (Yoonsu) Choi, Ph.D., presented the device he engineered, along with supporting research, at the annual meeting of the American Society for Blood and Marrow Transplantation in Tampa, FL, today. Choi's device, called HitMeD (high throughput medical electroporation device), has been used for preclinical studies in treatment of acute lymphocytic leukemia (ALL), with early results indicating it has the potential to decrease a patient's wait time to receive immunotherapy from weeks and months to days and weeks.

"This particular device is an automated system designed to work with the press of a button, which saves us time and resources," says Choi. "More importantly, it's a very safe method of gene transfer."

Multiple relapsed ALL in pediatric patients is a rapidly progressive cancer that is often resistant to chemotherapy, leading to poor survival prognosis. Since chemotherapy typically fails these patients, new approaches, such as cell-based therapy, are needed to combat the quickly spreading leukemia.

Choi, along with senior researcher Laurence Cooper, M.D., Ph.D., from the Children's Cancer Hospital, are studying ways to genetically manipulate T cells, an important component of a person's immune system, to specifically attack tumor cells while keeping risk to the patient at a minimum.

One method found to be effective in preclinical tests is taking a sample of human T cells, increasing their number through stimulation and then genetically transferring desired messenger RNA (mRNA) into the T cells. The mRNA, once inside the T cells, produces a protein called chimeric antigen receptor (CAR), which allows the T cells to recognize and specifically kill tumor cells. The HitMeD device carries out this entire process. Once the altered T cells are created, researchers use them to battle leukemia cells in the laboratory.

Although these manipulated T cells have shown to be effective against ALL in mice and cell lines, they lose their fighting power after a few days. For this reason, researchers engineered the new HitMeD, which processes the T cells 100 times faster than the current standard commercial technologies.

"Our goal is to provide therapy to patients closer to their time of need," says Cooper. "The HitMeD processes a larger volume of T cells in a continuous fashion over a much shorter time than we can achieve with commercial devices. We hope that will translate to better treatment opportunities for relapsed patients."

Cooper and researchers are planning a Phase I trial that could open this year. This trial would allow multiple-relapsed ALL patients to receive manipulated T cells that have been processed by HitMeD. These special T cells will act like an army of antibodies rushing in to attack tumor cells, but quickly retreating after their ammunition is used. With HitMeD, doctors hope to infuse additional doses of T cells more rapidly to sustain the fight until the patient can receive additional treatment, such as a stem cell transplant.

Other M. D. Anderson researchers on the study include Sourindra Maiti, Ph.D., Carrie Yuen, M.D., Helen Huls and Dean Lee, M.D., Ph.D., from the Division of Pediatrics, and Elizabeth Shpall, M.D., Partow Kebriaei, M.D., and Richard Champlin, M.D., from the Division of Cancer Medicine. Researchers from Rice University include Lisa Biswal, Ph.D., from Chemical and Biomolecular Engineering, Robert Raphael, Ph.D., from Bioengineering, and Thomas Killian, Ph.D., and Daniel Stark from Physics and Anatomy.

Funding for the research was provided from an institutional grant through M. D. Anderson and through the National Foundation for Cancer Research.


Story Source:

The above story is based on materials provided by University of Texas M. D. Anderson Cancer Center. Note: Materials may be edited for content and length.


Cite This Page:

University of Texas M. D. Anderson Cancer Center. "Device Aims To Decrease Wait Period For Patients Needing Immunotherapy." ScienceDaily. ScienceDaily, 20 February 2009. <www.sciencedaily.com/releases/2009/02/090213130736.htm>.
University of Texas M. D. Anderson Cancer Center. (2009, February 20). Device Aims To Decrease Wait Period For Patients Needing Immunotherapy. ScienceDaily. Retrieved April 20, 2014 from www.sciencedaily.com/releases/2009/02/090213130736.htm
University of Texas M. D. Anderson Cancer Center. "Device Aims To Decrease Wait Period For Patients Needing Immunotherapy." ScienceDaily. www.sciencedaily.com/releases/2009/02/090213130736.htm (accessed April 20, 2014).

Share This



More Health & Medicine News

Sunday, April 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Nine-Month-Old Baby Can't Open His Mouth

Nine-Month-Old Baby Can't Open His Mouth

Newsy (Apr. 19, 2014) Nine-month-old Wyatt Scott was born with a rare disorder called congenital trismus, which prevents him from opening his mouth. Video provided by Newsy
Powered by NewsLook.com
'Holy Grail' Of Weight Loss? New Find Could Be It

'Holy Grail' Of Weight Loss? New Find Could Be It

Newsy (Apr. 18, 2014) In a potential breakthrough for future obesity treatments, scientists have used MRI scans to pinpoint brown fat in a living adult for the first time. Video provided by Newsy
Powered by NewsLook.com
Little Progress Made In Fighting Food Poisoning, CDC Says

Little Progress Made In Fighting Food Poisoning, CDC Says

Newsy (Apr. 18, 2014) A new report shows rates of two foodborne infections increased in the U.S. in recent years, while salmonella actually dropped 9 percent. Video provided by Newsy
Powered by NewsLook.com
Scientists Create Stem Cells From Adult Skin Cells

Scientists Create Stem Cells From Adult Skin Cells

Newsy (Apr. 17, 2014) The breakthrough could mean a cure for some serious diseases and even the possibility of human cloning, but it's all still a way off. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins