Featured Research

from universities, journals, and other organizations

Most Extreme Gamma-ray Blast Ever, Seen By Fermi Gamma-ray Space Telescope

Date:
February 23, 2009
Source:
DOE/SLAC National Accelerator Laboratory
Summary:
With the greatest total energy, the fastest motions, and the highest-energy initial emissions ever before seen, a gamma-ray burst recently observed by the Fermi Gamma-ray Space Telescope is one for the record books. The spectacular blast also raises new questions about gamma-ray bursts.

Still image from a movie that compresses about 8 minutes of Fermi LAT observations of GRB 080916C into 6 seconds. Colored dots represent gamma rays of different energies. Visible light has energy between about 2 and 3 electron volts (eV). The blue dots represent lower-energy gamma rays (less than 100 million eV); green, moderate energies (100 million to 1 billion eV); and red, the highest energies (more than 1 billion eV).
Credit: NASA/DOE/Fermi LAT Collaboration

With the greatest total energy, the fastest motions, and the highest-energy initial emissions ever before seen, a gamma-ray burst recently observed by the Fermi Gamma-ray Space Telescope is one for the record books. The spectacular blast, which also raises new questions about gamma-ray bursts, was discovered by the FGST's Large Area Telescope, a collaboration among NASA, the U.S. Department of Energy (DOE) Office of Science and international partners.

"Burst emissions at these energies are still poorly understood, and Fermi is giving us the tools to figure them out," says Large Area Telescope Principal Investigator Peter Michelson, a Stanford University physics professor affiliated with the Department of Energy's SLAC National Accelerator Laboratory.

The explosion, designated GRB 080916C, occurred at 7:13 p.m. EDT Sept. 15 (after midnight GMT, Sept. 16) in the constellation Carina. Fermi's other instrument, the Gamma-ray Burst Monitor (GBM), simultaneously recorded the event. Together, the two instruments provide a view of the blast's gamma-ray emission from energies ranging from 3,000 to more than 5 billion times that of visible light.

A team led by Jochen Greiner at the Max Planck Institute for Extraterrestrial Physics in Garching, Germany, established that the blast occurred 12.2 billion light-years away using the Gamma-Ray Burst Optical/Near-Infrared Detector (GROND) on the 2.2-meter telescope at the European Southern Observatory in La Silla, Chile.

"Already, this was an exciting burst," says Julie McEnery, a Fermi deputy project scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "But with the GROND team's distance, it went from exciting to extraordinary."

With the distance in hand, FGST team members showed that the blast exceeded the power of nearly 9,000 ordinary supernovae and that the gas bullets emitting the initial gamma rays must have moved at no less than 99.9999 percent the speed of light. This burst's tremendous power and speed make it the most extreme recorded to date.

The burst is not only spectacular but also enigmatic: a curious time delay separates its highest-energy emissions from its lowest. Such a time lag has been seen clearly in only one earlier burst, and researchers have several explanations for why it may exist.

The environment around a gamma-ray burst is extremely complicated. Although the specifics vary from burst to burst, the surrounding area generally includes the remnants of a stellar explosion, a magnetic field, a black hole and various particles accelerated by the black hole's gravitational pull, as well as huge amounts of radiation. It is possible that the delays could be explained by the structure of this environment, with the low- and high-energy gamma rays "coming from different parts of the jet or [being] created through a different mechanism," Michelson says.

Another, far more speculative theory posits that perhaps time lags result not from anything in the environment around the black hole, but from the gamma rays' long journey from the black hole to our telescopes. If the theorized idea of quantum gravity is correct, then at its smallest scale space is not a smooth medium but a tumultuous, boiling froth of "quantum foam." Lower-energy (and thus lighter) gamma rays would travel faster through this foam than higher-energy (and thus heavier) gamma rays. Over the course of 12.2 billion light years, this very small effect could add up to a significant delay.

The FGST results provide the strongest test to date of the speed of light's consistency at these extreme energies. As FGST observes more gamma-ray bursts, researchers can look for time lags that vary with respect to the bursts. If the quantum gravity effect is present, time lags should vary in relation to the distance. If the environment around the burst origin is the cause, the lag should stay relatively constant no matter how far away the burst occurred.

"This one burst raises all sorts of questions," Michelson says. "In a few years, we'll have a fairly good sample of bursts, and may have some answers."

The team's results appear in the February 19 edition of Science Express.

Gamma-ray bursts are the universe's most luminous explosions. Astronomers believe most occur when exotic massive stars run out of nuclear fuel. As a star's core collapses into a black hole, jets of material—powered by processes not yet fully understood—blast outward at nearly the speed of light. The jets bore all the way through the collapsing star and continue into space, where they interact with gas previously shed by the star. This generates bright afterglows that fade with time.


Story Source:

The above story is based on materials provided by DOE/SLAC National Accelerator Laboratory. Note: Materials may be edited for content and length.


Cite This Page:

DOE/SLAC National Accelerator Laboratory. "Most Extreme Gamma-ray Blast Ever, Seen By Fermi Gamma-ray Space Telescope." ScienceDaily. ScienceDaily, 23 February 2009. <www.sciencedaily.com/releases/2009/02/090219141458.htm>.
DOE/SLAC National Accelerator Laboratory. (2009, February 23). Most Extreme Gamma-ray Blast Ever, Seen By Fermi Gamma-ray Space Telescope. ScienceDaily. Retrieved August 21, 2014 from www.sciencedaily.com/releases/2009/02/090219141458.htm
DOE/SLAC National Accelerator Laboratory. "Most Extreme Gamma-ray Blast Ever, Seen By Fermi Gamma-ray Space Telescope." ScienceDaily. www.sciencedaily.com/releases/2009/02/090219141458.htm (accessed August 21, 2014).

Share This




More Space & Time News

Thursday, August 21, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Space to Ground: Hello Georges

Space to Ground: Hello Georges

NASA (Aug. 18, 2014) Europe's ATV-5 delivers new science and the crew tests smart SPHERES. Questions or comments? Use #spacetoground to talk to us. Video provided by NASA
Powered by NewsLook.com
Tiny Satellites, Like The One Tossed From ISS, On The Rise

Tiny Satellites, Like The One Tossed From ISS, On The Rise

Newsy (Aug. 18, 2014) The Chasqui I, hand-delivered into orbit by a Russian cosmonaut, is one of hundreds of small satellites set to go up in the next few years. Video provided by Newsy
Powered by NewsLook.com
This Week @ NASA, August 15, 2014

This Week @ NASA, August 15, 2014

NASA (Aug. 15, 2014) Carbon Observatory’s First Data, ATV-5 Delivers Cargo, Cygnus Departs Station and more... Video provided by NASA
Powered by NewsLook.com
Space Shuttle Replica Hoisted for Landmark Exhibit

Space Shuttle Replica Hoisted for Landmark Exhibit

Reuters - US Online Video (Aug. 14, 2014) The space shuttle replica Independence has been hoisted atop Space Center Houston's shuttle carrier aircraft, creating a monument to the shuttle program which will open to the public next year. Rough Cut (no reporter narration). Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins