Featured Research

from universities, journals, and other organizations

Models Present New View Of Nanoscale Friction

Date:
March 10, 2009
Source:
University of Wisconsin-Madison
Summary:
Friction is a force that affects any application where moving parts come into contact; the more surface contact there is, the stronger the force. At the nanoscale -- mere billionths of a meter -- friction can wreak havoc on tiny devices made from only a small number of atoms or molecules. With their high surface-to-volume ratio, nanomaterials are especially susceptible to the forces of friction.

This graphic recreates an atom-level view of the nanoscale interface between carbon and diamond. At such a small scale, the surfaces are rough, although researchers have been treating them as smooth.
Credit: Izabela Szlufarska

To understand friction on a very small scale, a team of University of Wisconsin-Madison engineers had to think big.

Friction is a force that affects any application where moving parts come into contact; the more surface contact there is, the stronger the force. At the nanoscale — mere billionths of a meter — friction can wreak havoc on tiny devices made from only a small number of atoms or molecules. With their high surface-to-volume ratio, nanomaterials are especially susceptible to the forces of friction.

But researchers have trouble describing friction at such small scales because existing theories are not consistent with how nanomaterials actually behave. Through computer simulations, the group demonstrated that friction at the atomic level behaves similarly to friction generated between large objects. Five hundred years after Leonardo da Vinci discovered the basic friction laws for large objects, the UW-Madison team has shown that similar laws apply at the nanoscale.

The team, which was led by Izabela Szlufarska, an assistant professor of materials science and engineering, and included materials science and engineering graduate student Yifei Mo and mechanical engineering assistant professor Kevin Turner, published its findings in the Feb. 26 issue of the journal Nature.

Current nanoscale friction theories are based on the idea that nanoscale surfaces are smooth, but, in reality, the surfaces resemble a mountain range, where each peak corresponds to an atom or a molecule.

The UW-Madison team performed computer simulations that looked at nanoscale materials as a collection of atoms, monitoring their positions and interactions throughout the entire sliding process. "For the first time, we modeled friction at length scales very similar to experiments, while maintaining atomic resolution and realistic interactions between atoms," say Szlufarska.

The team discovered simple laws of nanoscale friction. They found that friction is proportional to the number of atoms that interact between two nanoscale surfaces. The researchers' simulations showed that, at the nanoscale, materials in contact behave more like large rough objects rubbing against each other, rather than as two perfectly smooth surfaces, as was previously imagined. "When you look at it closely, the surface is made of atoms, so the contact is actually rough," says Szlufarska.

The team's simulation data correlates very well with recorded experimental data — something that previous models have failed to accomplish. Szlufarska hopes to use the simulations as a tool to understand what mechanisms contribute to friction on both the nano- and macroscale.

"Nobody is able to predict friction or design materials with desired friction properties — we measure a lot of friction coefficients for different materials, but it's not really clear how to relate them to the properties of the material," she explains. "The origin of friction is really an open and growing research field."


Story Source:

The above story is based on materials provided by University of Wisconsin-Madison. Note: Materials may be edited for content and length.


Cite This Page:

University of Wisconsin-Madison. "Models Present New View Of Nanoscale Friction." ScienceDaily. ScienceDaily, 10 March 2009. <www.sciencedaily.com/releases/2009/02/090225132237.htm>.
University of Wisconsin-Madison. (2009, March 10). Models Present New View Of Nanoscale Friction. ScienceDaily. Retrieved October 1, 2014 from www.sciencedaily.com/releases/2009/02/090225132237.htm
University of Wisconsin-Madison. "Models Present New View Of Nanoscale Friction." ScienceDaily. www.sciencedaily.com/releases/2009/02/090225132237.htm (accessed October 1, 2014).

Share This



More Matter & Energy News

Wednesday, October 1, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Japan Looks To Faster Future As Bullet Train Turns 50

Japan Looks To Faster Future As Bullet Train Turns 50

Newsy (Oct. 1, 2014) Japan's bullet train turns 50 Wednesday. Here's a look at how it's changed over half a century — and the changes it's inspired globally. Video provided by Newsy
Powered by NewsLook.com
US Police Put Body Cameras to the Test

US Police Put Body Cameras to the Test

AFP (Oct. 1, 2014) Police body cameras are gradually being rolled out across the US, with interest surging after the fatal police shooting in August of an unarmed black teenager. Duration: 02:18 Video provided by AFP
Powered by NewsLook.com
Raw: Japan Celebrates 'bullet Train' Anniversary

Raw: Japan Celebrates 'bullet Train' Anniversary

AP (Oct. 1, 2014) A ceremony marking 50 years since Japan launched its Shinkansen bullet train was held on Wednesday in Tokyo. The latest model can travel from Tokyo to Osaka, a distance of 319 miles, in two hours and 25 minutes. (Oct. 1) Video provided by AP
Powered by NewsLook.com
Robotic Hair Restoration

Robotic Hair Restoration

Ivanhoe (Oct. 1, 2014) A new robotic procedure is changing the way we transplant hair. The ARTAS robot leaves no linear scarring and provides more natural results. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins