Featured Research

from universities, journals, and other organizations

Protein Found Linking Stress And Depression

Date:
February 28, 2009
Source:
Rockefeller University
Summary:
Stress, the ever-present threat to health and happy living, is tough on the brain. If the strain goes on too long, it can lead to debilitating psychological problems. Part of the reason, according to scientists, may have to do with a little-known family of proteins called kainate receptors that has recently been implicated in major depression. New research in rats may help explain one mechanism by which stress reshapes the brain: namely, by ramping up production of a particular part of these proteins.

Stress, the ever-present threat to health and happy living, is tough on the brain. If the strain goes on too long, it can lead to debilitating psychological problems. Part of the reason, according to scientists at The Rockefeller University, may have to do with a little-known family of proteins called kainate receptors that has recently been implicated in major depression. New research in rats may help explain one mechanism by which stress reshapes the brain: namely, by ramping up production of a particular part of these proteins.

“We’ve recently seen large human studies that suggest kainate receptors are targets for response to certain antidepressants and are also involved in major depression and the susceptibility to suicidal thoughts,” says Richard Hunter, a postdoctoral fellow in Bruce S. McEwen’s

Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology at Rockefeller. “We are trying to build up a molecular understanding of what is going on here.”

Hunter and his colleagues homed in on one of five subunits of the kainate receptor called KA1. Performing a series of experiments exploring the impact of stress and steroids on rats, they found that stress, simulated by restraining the rats for six hours a day for three weeks, caused the genes to send instructions — messenger RNA — to increase production of KA1 subunits in particular parts of the hippocampus, a highly plastic brain structure involved in learning and memory.

The lab produced a similar result by injecting unstressed rats with hormones called corticosteroids, suggesting that an increase in these hormones is largely responsible for the stress response in rats. But the researchers also found that the dose is critical. While a moderate amount of corticosteroids increased KA1 messenger RNA, a high dose of the steroids did not. The relationship between the hormone and its impact is an inverted U response, a pattern familiar to biologists.

“The body seeks to maintain ideal levels, whether it is salts in the blood or any number of other things like KA1,” Hunter says. “Deviations to either side of these levels can cause pathologies or changes. The body adapts to changing circumstances to keep the levels healthy.”

Stress and depression are known to cause a reversible retraction of dendrites in certain brain cells, particularly in the hippocampus, that McEwen and colleagues refer to as “adaptive plasticity.” The new research suggests that an increase in KA1, caused by the corticosteroid response in rats, may trigger this retraction. The finding follows recent work by Rockefeller’s Sidney Strickland, head of the Laboratory of Neurobiology and Genetics, that showed that KA1 production explodes in the hippocampus during simulated stroke in mice, driving a cell-death cascade that begins when part of the brain is deprived of blood. Combined, the work suggests that the relatively understudied KA1 subunit plays an important role in a key area of the brain in both causing damage in an uncontrolled trauma such as a stroke and in protecting the brain from damage under the more controlled circumstances of chronic stress.

McEwen and colleagues have shown that healthy brains are remarkably resilient in the face of stress — brains replace their retracted neurons once the stress is removed. Perhaps, the researchers say, the same will prove true for depression. “One of the great hopes is that these changes in the hippocampus that happen with prolonged depression may not be signs of permanent irreversible damage but they may actually be signs of plasticity that we can treat with appropriate medications and also behavioral therapies,” McEwen says.


Story Source:

The above story is based on materials provided by Rockefeller University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Hunter et al. Regulation of Kainate Receptor Subunit mRNA by Stress and Corticosteroids in the Rat Hippocampus. PLoS ONE, 2009; 4 (1): e4328 DOI: 10.1371/journal.pone.0004328

Cite This Page:

Rockefeller University. "Protein Found Linking Stress And Depression." ScienceDaily. ScienceDaily, 28 February 2009. <www.sciencedaily.com/releases/2009/02/090225175850.htm>.
Rockefeller University. (2009, February 28). Protein Found Linking Stress And Depression. ScienceDaily. Retrieved October 20, 2014 from www.sciencedaily.com/releases/2009/02/090225175850.htm
Rockefeller University. "Protein Found Linking Stress And Depression." ScienceDaily. www.sciencedaily.com/releases/2009/02/090225175850.htm (accessed October 20, 2014).

Share This



More Mind & Brain News

Monday, October 20, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Your Birth Season Might Determine Your Temperament

Your Birth Season Might Determine Your Temperament

Newsy (Oct. 20, 2014) A new study says the season you're born in can determine your temperament — and one season has a surprising outcome. Video provided by Newsy
Powered by NewsLook.com
Court Ruling Means Kids' Online Activity Could Be On Parents

Court Ruling Means Kids' Online Activity Could Be On Parents

Newsy (Oct. 17, 2014) In a ruling attorneys for both sides agreed was a first of its kind, a Georgia appeals court said parents can be held liable for what kids put online. Video provided by Newsy
Powered by NewsLook.com
The Best Foods To Boost Your Mood

The Best Foods To Boost Your Mood

Buzz60 (Oct. 17, 2014) Feeling down? Reach for the refrigerator, not the medicine cabinet! TC Newman (@PurpleTCNewman) shares some of the best foods to boost your mood. Video provided by Buzz60
Powered by NewsLook.com
You Can Get Addicted To Google Glass, Apparently

You Can Get Addicted To Google Glass, Apparently

Newsy (Oct. 15, 2014) Researchers claim they’ve diagnosed the first example of the disorder in a 31-year-old U.S. Navy serviceman. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins