Featured Research

from universities, journals, and other organizations

New Building Design Withstands Earthquake Simulation

Date:
March 9, 2009
Source:
University of Michigan
Summary:
Researchers have simulated an off-the-charts earthquake in a laboratory to test their new technique for bracing high-rise concrete buildings. Their technique passed the test, withstanding more movement than an earthquake would typically demand.

Engineers constructed a four-story, 40-percent replica of a building in a laboratory to test their new technique for bracing high rise buildings in earthquake zones. They simulated an earthquake by pushing and pulling the building with hydraulics.
Credit: Remy Lequesne

Researchers at the University of Michigan simulated an off-the-charts earthquake in a laboratory to test their new technique for bracing high-rise concrete buildings. Their technique passed the test, withstanding more movement than an earthquake would typically demand.

Related Articles


The engineers used steel fiber-reinforced concrete to develop a better kind of coupling beam that requires less reinforcement and is easier to construct. Coupling beams connect the walls of high rises around openings such as those for doorways, windows, and elevator shafts. These necessary openings can weaken walls.

"We simulated an earthquake that is beyond the range of the maximum credible earthquake and our test was very successful. Our fiber-reinforced concrete beams behaved as well as we expected they would, which is better than the beams in use today," said James Wight, the Frank E. Richart Jr. Collegiate Professor in the U-M Department of Civil and Environmental Engineering.

Working with Wight on this project are Gustavo Parra-Montesinos, an associate professor in the Department of Civil and Environmental Engineering, and Remy Lequesne, a doctoral student in the same department.

Today, coupling beams are difficult to install and require intricate reinforcing bar skeletons. The U-M engineers created a simpler version made of a highly flowable, steel fiber-reinforced concrete.

"We took quite a bit of the cumbersome reinforcement out of the design and replaced it with steel fibers that can be added to the concrete while it's being mixed," Parra-Montesinos said. "Builders could use this fiber-reinforced concrete to build coupling beams that don't require as much reinforcement."

The engineers envision that their brand of beam would be cast off the construction site and then delivered. Nowadays, builders construct the beams, steel skeletons and all, bit by bit as they're building skyscrapers.

Their fiber-reinforced concrete has other benefits as well.

"The cracks that do occur are narrower because the fibers hold them together," Parra-Montesinos said.

The fibers are about one inch long and about the width of a needle.

The engineers performed their test in December on a 40-percent replica of a 4-story building wall that they built in the Structures Laboratory. They applied a peak load of 300,000 pounds against the building, pushing and pulling it with hydraulic actuators.

To quantify the results, they measured the building's drift, which is the motion at the top of the building compared with the motion at the base. In a large earthquake, a building might sustain a drift of 1 to 2 percent. The U-M structure easily withstood a drift of 3 percent.

The new beams could provide an easier, cheaper, stronger way to brace buildings in earthquake-prone areas.

The researchers are now working with a structural design firm to install the beams in several high rises soon to be under construction on the west coast.

This research is funded by the National Science Foundation under the Network for Earthquake Engineering Simulation Program.


Story Source:

The above story is based on materials provided by University of Michigan. Note: Materials may be edited for content and length.


Cite This Page:

University of Michigan. "New Building Design Withstands Earthquake Simulation." ScienceDaily. ScienceDaily, 9 March 2009. <www.sciencedaily.com/releases/2009/02/090227080558.htm>.
University of Michigan. (2009, March 9). New Building Design Withstands Earthquake Simulation. ScienceDaily. Retrieved April 21, 2015 from www.sciencedaily.com/releases/2009/02/090227080558.htm
University of Michigan. "New Building Design Withstands Earthquake Simulation." ScienceDaily. www.sciencedaily.com/releases/2009/02/090227080558.htm (accessed April 21, 2015).

Share This


More From ScienceDaily



More Matter & Energy News

Tuesday, April 21, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Humanoid Robot Can Recognise and Interact With People

Humanoid Robot Can Recognise and Interact With People

Reuters - Innovations Video Online (Apr. 20, 2015) An ultra-realistic humanoid robot called &apos;Han&apos; recognises and interprets people&apos;s facial expressions and can even hold simple conversations. Developers Hanson Robotics hope androids like Han could have uses in hospitality and health care industries where face-to-face communication is vital. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com
Drones and Health Apps at Santiago's "Robotics Day"

Drones and Health Apps at Santiago's "Robotics Day"

AFP (Apr. 20, 2015) Latin American robotics experts gather in Santiago, Chile for "Robotics Day". Video provided by AFP
Powered by NewsLook.com
Japan Humanoid Robot Receives Customers at Department Store

Japan Humanoid Robot Receives Customers at Department Store

AFP (Apr. 20, 2015) She can smile, she can sing and she can give you guidance at one of the most upscale department stores in Tokyo...a female-looking humanoid makes her debut as a receptionist Video provided by AFP
Powered by NewsLook.com
Pee-Power Toilet to Light Up Disaster Zones

Pee-Power Toilet to Light Up Disaster Zones

Reuters - Innovations Video Online (Apr. 20, 2015) Students and staff are being asked to use a prototype urinal to &apos;donate&apos; urine to fuel microbial fuel cell (MFC) stacks that generate electricity to power lighting. The developers hope the pee-power technology will light toilet cubicles in refugee camps, where women are often at risk of assault in poorly lit sanitation areas. Matthew Stock reports. Video provided by Reuters
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins