Featured Research

from universities, journals, and other organizations

Old Cells Work Differently: Molecular Control Of Protein Elimination In Old Cells Revealed

Date:
March 10, 2009
Source:
Mainz, Universitaet
Summary:
The agglutination and accumulation of proteins in nerve cells are major hallmarks of age-related neurodegenerative illnesses such as Alzheimer's disease. Cellular survival thus depends on a controlled removal of excessive protein. Scientists have now discovered exactly how specific control proteins regulate protein breakdown during the aging process.

The agglutination and accumulation of proteins in nerve cells are major hallmarks of age-related neurodegenerative illnesses such as Alzheimer's disease. Cellular survival thus depends on a controlled removal of excessive protein. Scientists at Johannes Gutenberg University Mainz have now discovered exactly how specific control proteins regulate protein breakdown during the ageing process.

Every protein in our cells has a defined life span. At the end of this time and even sooner (e.g., in response to injury caused by external factors such as oxidative stress), proteins are eliminated by means of a specific protein degradation process. The quantity of proteins requiring elimination can rise in the face of ongoing oxidative stress, as can occur during the ageing process and in neurodegenerative illnesses.

Damaged proteins that cannot be rendered harmless through the cell's "protein purification plant" tend to aggregate and accumulate, thereby threatening the survival of the cell. Nerve cells are especially susceptible to such protein accumulation, and the agglutination of proteins in nerve cells is a characteristic pathological symptom of a wide spectrum of age-associated neurodegenerative illnesses in humans, such as Alzheimer's disease and Parkinson's disease. Effective protein quality control is thus a requirement for the survival of all cells.

It has already been postulated for some time that it is specifically this quality control mechanism that changes with the cellular ageing process, but it is only now that Professor Christian Behl's team at the Institute of Pathobiochemistry of Mainz University has succeeded in finding the critical molecular proof. They were able to precisely identify the proteins that on the molecular level regulate both of the potential cellular pathways for protein degradation - the proteasome and the lysosome pathways. The scientists were able to show how the control function of these proteins changes during the cell's ageing process.

These new discoveries, principally based on doctoral research by Martin Gamerdinger, are of the greatest importance for understanding the pathogenesis of age-associated neurodegenerative illnesses, and were prominently published in the EMBO Journal on 19 February. "We will only be able to discover and investigate the precise causes of age-associated neurodegenerative illnesses such as Alzheimer's disease and develop causal therapies if we closely consider the molecular changes that take place as nerve cells age. Alzheimer's is one of the diseases typically associated with old age; it has its origin and progresses in old nerve cells," emphasizes Christian Behl, confirming the importance of Gamerdinger's findings.

Collaborators in the research project were Professor Uwe Wolfrum of the Institute of Zoology of Johannes Gutenberg University Mainz and Professor Ulrich Hartl of the Max Planck Institute of Biochemistry in Martinsried near Munich. They focused their research on defining the special role of the proteins BAG1 and BAG3 in protein degradation during the ageing process.

They were able to demonstrate that BAG1 and BAG 3 regulate the proteasomal and lysosomal protein elimination pathways, respectively. "It is interesting that there is a switch from BAG1 to BAG3 that accompanies the cellular ageing process, and this change results in increased activation of the lysosomal protein breakdown pathway- the so-called ‘macroautophagy' pathway," explains first author Martin Gamerdinger. He started by studying human fibroblasts, and then successfully reproduced his findings in nerve cells. A similar BAG3-mediated, considerably more potent macroautophagy pathway also becomes predominant in the ageing rodent brain; the authors postulate that this change may be a way of compensating for the increased load of damaged proteins in older cells.

The dysfunction of this molecular switch as individuals age may be the reason for the malfunction of the cellular "protein purification plant" and account for the subsequent accumulation of proteins in nerve cells, as occurs in human neurodegenerative diseases. This will be investigated in more detail in future studies using specific disease models.


Story Source:

The above story is based on materials provided by Mainz, Universitaet. Note: Materials may be edited for content and length.


Journal Reference:

  1. Gamerdinger et al. Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. The EMBO Journal, Feb 19, 2009; DOI: 10.1038/emboj.2009.29

Cite This Page:

Mainz, Universitaet. "Old Cells Work Differently: Molecular Control Of Protein Elimination In Old Cells Revealed." ScienceDaily. ScienceDaily, 10 March 2009. <www.sciencedaily.com/releases/2009/03/090302091235.htm>.
Mainz, Universitaet. (2009, March 10). Old Cells Work Differently: Molecular Control Of Protein Elimination In Old Cells Revealed. ScienceDaily. Retrieved October 23, 2014 from www.sciencedaily.com/releases/2009/03/090302091235.htm
Mainz, Universitaet. "Old Cells Work Differently: Molecular Control Of Protein Elimination In Old Cells Revealed." ScienceDaily. www.sciencedaily.com/releases/2009/03/090302091235.htm (accessed October 23, 2014).

Share This



More Health & Medicine News

Thursday, October 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Orthodontist Mom Jennifer Salzer on the Best Time for Braces

Working Mother (Oct. 22, 2014) Is your child ready? Video provided by Working Mother
Powered by NewsLook.com
U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

U.S. Issues Ebola Travel Restrictions, Are Visa Bans Next?

Newsy (Oct. 22, 2014) Now that the U.S. is restricting travel from West Africa, some are dropping questions about a travel ban and instead asking about visa bans. Video provided by Newsy
Powered by NewsLook.com
US to Track Everyone Coming from Ebola Nations

US to Track Everyone Coming from Ebola Nations

AP (Oct. 22, 2014) Stepping up their vigilance against Ebola, federal authorities said Wednesday that everyone traveling into the US from Ebola-stricken nations will be monitored for symptoms for 21 days. (Oct. 22) Video provided by AP
Powered by NewsLook.com
Doctors Help Paralysed Man Walk Again, Patient in Disbelief

Doctors Help Paralysed Man Walk Again, Patient in Disbelief

AFP (Oct. 22, 2014) Polish doctors describe how they helped a paralysed man walk again, with the patient in disbelief at the return of sensation to his legs. Duration: 1:04 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins