Featured Research

from universities, journals, and other organizations

Ultra-thin Chip Embedding For Wearable Electronics

Date:
March 17, 2009
Source:
Interuniversity Microelectronics Centre (IMEC)
Summary:
Technologists have created a new 3D integration process enabling flexible electronic systems with a thickness of less than 60 micrometer. This ultra-thin chip package (UTCP) technology allows integrating complete systems in a conventional low-cost flex substrate. This paves the way to low-cost, unobtrusive wearable electronics for e.g. wearable health and comfort monitoring.

IMEC's flexible wireless monitoring system for vital body parameters with embedded microcontroller chip.
Credit: IMEC

At the Smart Systems Integration Conference in Brussels (Belgium)*, technologists from IMEC and its associated laboratory at Ghent University present a new 3D integration process enabling flexible electronic systems with a thickness of less than 60 micrometer.

Related Articles


This ultra-thin chip package (UTCP) technology allows integrating complete systems in a conventional low-cost flex substrate. This paves the way to low-cost, unobtrusive wearable electronics for e.g. wearable health and comfort monitoring.

For the integration, the chip is first thinned down to 25 micron and embedded in a flexible ultra-thin chip package. Next, the package is embedded in a standard double-layer flex printed circuit board (PCB) using standard flex PCB production techniques. After embedding, other components can be mounted above and below the embedded chip, leading to a high-density integration.

The integration process uses UTCP interposers which solve the “Known Good Die” issue by enabling easy testing of the packaged thin dies before embedding. Expensive high-density flexible substrates can be avoided by the fan-out UTCP technology which relaxes the interconnection pitch from 100m or lower to 300m or more, compatible with standard flex substrates.

IMEC demonstrates the integration technology with a prototype flexible wireless monitor that measures the heart rate (electrocardiogram or ECG) and muscle activity (electromyogram or EMG). The system consists of an embedded ultra-thin chip for the microcontroller and analog-to-digital convertor, an ultra-low power biopotential amplifier chip and a radio transceiver. By thinning down the chips for UTCP embedding, they become mechanically flexible resulting in an increased flexibility of the complete system, making it unobtrusive and comfortable to wear.

*March 10, 2009


Story Source:

The above story is based on materials provided by Interuniversity Microelectronics Centre (IMEC). Note: Materials may be edited for content and length.


Cite This Page:

Interuniversity Microelectronics Centre (IMEC). "Ultra-thin Chip Embedding For Wearable Electronics." ScienceDaily. ScienceDaily, 17 March 2009. <www.sciencedaily.com/releases/2009/03/090310084844.htm>.
Interuniversity Microelectronics Centre (IMEC). (2009, March 17). Ultra-thin Chip Embedding For Wearable Electronics. ScienceDaily. Retrieved November 27, 2014 from www.sciencedaily.com/releases/2009/03/090310084844.htm
Interuniversity Microelectronics Centre (IMEC). "Ultra-thin Chip Embedding For Wearable Electronics." ScienceDaily. www.sciencedaily.com/releases/2009/03/090310084844.htm (accessed November 27, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Thursday, November 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

NASA's First 3-D Printer In Space Creates Its First Object

NASA's First 3-D Printer In Space Creates Its First Object

Newsy (Nov. 26, 2014) The International Space Station is now using a proof-of-concept 3D printer to test additive printing in a weightless, isolated environment. Video provided by Newsy
Powered by NewsLook.com
Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Bolivian Recycling Initiative Turns Plastic Waste Into School Furniture

Reuters - Innovations Video Online (Nov. 26, 2014) Innovative recycling project in La Paz separates city waste and converts plastic garbage into school furniture made from 'plastiwood'. Tara Cleary reports. Video provided by Reuters
Powered by NewsLook.com
Blu-Ray Discs Getting Second Run As Solar Panels

Blu-Ray Discs Getting Second Run As Solar Panels

Newsy (Nov. 26, 2014) Researchers at Northwestern University are repurposing Blu-ray movies for better solar panel technology thanks to the discs' internal structures. Video provided by Newsy
Powered by NewsLook.com
Today's Prostheses Are More Capable Than Ever

Today's Prostheses Are More Capable Than Ever

Newsy (Nov. 26, 2014) Advances in prosthetics are making replacement body parts stronger and more lifelike than they’ve ever been. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins