Featured Research

from universities, journals, and other organizations

New Way The Malaria Parasite And Red Blood Cells Interact

Date:
March 17, 2009
Source:
Virginia Commonwealth University
Summary:
Researchers have discovered a new mechanism the malaria parasite uses to enter human red blood cells, which could lead to the development of a vaccine cocktail to fight the mosquito-borne disease.

Virginia Commonwealth University Life Sciences researchers have discovered a new mechanism the malaria parasite uses to enter human red blood cells, which could lead to the development of a vaccine cocktail to fight the mosquito-borne disease.

Malaria is transmitted to humans through bites from mosquitoes. According to the Centers for Disease Control and Prevention, between 350 million and 500 million cases of malaria occur world-wide annually, and more than 1 million people, mostly children living in areas of Africa south of the Sahara, die each year from it.

For decades, researchers have known that a molecule called glycophorin B, which is found on the surface of human red blood cells, is important for invasion of the malaria parasite. However, the specific molecule by which the malaria parasite attaches itself to invade the host was not known until now.

The team examined how the malaria parasite, Plasmodium falciparum, interacts with red blood cells using a biochemical test that looks specifically at how the parasite and host bind to each other. The findings revealed that the EBL-1 molecule is the specific attachment site used by the parasite on glycophorin B.

The study was published online in the Early Edition of the Proceedings of the National Academy of Sciences the week of March 9.

"We have now identified how the parasite binds to glycophorin B on the red blood cells. Down the road, the EBL-1 molecule could be used as a vaccine target against malaria as part of a multivalent vaccine, or vaccine cocktail," said principal investigator Ghislaine Mayer, Ph.D., assistant professor in the VCU Department of Biology.

Additionally, Mayer and her team hypothesize that the malaria parasite may be the cause of the loss of the gene for glycophorin B in the pygmies of Ituri forest in the Democratic Republic of Congo.

According to Mayer, these findings suggest that the parasite may possibly be putting selective pressure on populations in malaria-endemic areas, such as the Democratic Republic of Congo. She said that there appears to be a disproportionate number of individuals in malaria-endemic areas with unusual or mutated red blood cell surface molecules.

"We think these changes on the surface of the red blood cell may lead to a decrease in the severity of malaria or resistance against malaria. For example, Africans are protected from a form of malaria caused by the Plasmodium vivax parasite because the molecule that the parasite recognizes is missing from the surface of their red blood cells because of a mutation," said Mayer.

Mayer worked with researchers from the VCU Department of Biology, Jann Cofle, Ph.D., Erin Tracy, Ph.D., Laurence H. Mendoza, Ph.D., and Louis H. Miller, Ph.D.; Lubin Jiang, Ph.D., and Juraj Kabat, Ph.D., with the National Institute of Allergy and Infectious Diseases and Daniel L. Hartl, Ph.D., with the Department of Organismic and Evolutionary Biology at Harvard University.


Story Source:

The above story is based on materials provided by Virginia Commonwealth University. Note: Materials may be edited for content and length.


Cite This Page:

Virginia Commonwealth University. "New Way The Malaria Parasite And Red Blood Cells Interact." ScienceDaily. ScienceDaily, 17 March 2009. <www.sciencedaily.com/releases/2009/03/090310152333.htm>.
Virginia Commonwealth University. (2009, March 17). New Way The Malaria Parasite And Red Blood Cells Interact. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2009/03/090310152333.htm
Virginia Commonwealth University. "New Way The Malaria Parasite And Red Blood Cells Interact." ScienceDaily. www.sciencedaily.com/releases/2009/03/090310152333.htm (accessed April 23, 2014).

Share This



More Health & Medicine News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Big Pharma Braces for M&A Wave

Big Pharma Braces for M&A Wave

Reuters - Business Video Online (Apr. 22, 2014) Big pharma on the move as Novartis boss, Joe Jimenez, tells Reuters about plans to transform his company via an asset exchange with GSK, and Astra Zeneca shares surge on speculation that Pfizer is looking for a takeover. Joanna Partridge reports. Video provided by Reuters
Powered by NewsLook.com
Study Says Most Crime Not Linked To Mental Illness

Study Says Most Crime Not Linked To Mental Illness

Newsy (Apr. 22, 2014) A new study finds most crimes committed by people with mental illness are not caused by symptoms of their illness or disorder. Video provided by Newsy
Powered by NewsLook.com
Hagel Gets Preview of New High-Tech Projects

Hagel Gets Preview of New High-Tech Projects

AP (Apr. 22, 2014) Defense Secretary Chuck Hagel is given hands-on demonstrations Tuesday of some of the newest research from DARPA _ the military's Defense Advanced Research Projects Agency program. (April 22) Video provided by AP
Powered by NewsLook.com
How Smaller Plates And Cutlery Could Make You Feel Fuller

How Smaller Plates And Cutlery Could Make You Feel Fuller

Newsy (Apr. 22, 2014) NBC's "Today" conducted an experiment to see if changing the size of plates and utensils affects the amount individuals eat. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins