Featured Research

from universities, journals, and other organizations

New Investigational Treatment For Bladder Cancer Identified

Date:
March 19, 2009
Source:
Columbia University Medical Center
Summary:
A new investigational therapy for the treatment of bladder cancer has been identified. The discovery was made using a new research model, using mice, which replicates many aspects of human bladder cancer. The model also enabled the researchers to demonstrate that two major tumor suppressor genes, p53 and PTEN, are inactivated in invasive bladder cancer.

A team of researchers, led by Columbia University Medical Center faculty, has identified a new investigational therapy for the treatment of bladder cancer. The discovery was made using a new research model, using mice, which replicates many aspects of human bladder cancer. The model also enabled the researchers to demonstrate that two major tumor suppressor genes, p53 and PTEN, are inactivated in invasive bladder cancer.

The findings and this new model are described in a paper in the March 15, 2009 issue of Genes & Development.

The new model disrupts a signaling pathway, known as mTOR, which blocks tumor growth. Inhibiting mTOR with a drug called rapamycin was found to significantly slow the progression of bladder tumors in mice.

The research was led by Drs. Cory Abate-Shen and Carlos Cordon-Cardo, both professors in the Departments of Urology and Pathology & Cell Biology and associate directors in the Herbert Irving Comprehensive Cancer Center of Columbia University Medical Center and NewYork-Presbyterian Hospital.

"We believe that this new mouse model of human bladder cancer will be invaluable to the field of bladder cancer research. Already it has provided a relevant preclinical model for therapeutic investigations and a strong rationale for targeting the mTOR signaling pathway in patients with invasive bladder cancer," said Dr. Abate-Shen.

"Importantly, the new insights that this model has provided about the role of the inactivation of both p53 and PTEN in invasive bladder cancer may enable oncologists to more quickly identify patients with invasive disease, who may need aggressive treatment to slow the progression of their bladder cancer," said Dr. Cordon-Cardo, who is associate director for research infrastructure at the Herbert Irving Comprehensive Cancer Center and vice-chair of pathology at Columbia University Medical Center.

Bladder cancer is a serious health problem worldwide; it is the fifth most common malignancy and a major cause of cancer morbidity and mortality. Until now, there have been few mouse models that properly replicate the invasive capabilities of this disease, leaving researchers with few tools to help them develop new therapeutic approaches for combating it.

"This new mouse model is enormously important for the study of bladder cancer," said Daniel P. Petrylak, M.D., associate professor of medicine at Columbia University College of Physicians & Surgeons and Director of the Genitourinary Oncology Program at New York-Presbyterian Hospital/Columbia.

"Based on the initial findings about the efficacy of inhibiting the mTOR signaling pathway with rapamycin in the mouse model, I am excited to be collaborating with Dr. Abate-Shen to further investigate the implications of this research," said James McKiernan, M.D., the John and Irene Given Associate Professor and director of urologic oncology at the Herbert Irving Comprehensive Cancer Center, who was not involved in the study.

Role of p53 and PTEN in Bladder and Other Cancers

P53 and PTEN have been found to be mutated in a significant number of advanced cancers, in bladder cancer representing approximately 41 percent of the invasive tumors and previously published research has demonstrated that their combined inactivation has profound consequences for tumor growth in many contexts, including lymphoma, prostate cancer and brain tumors. In 1997, Ramon Parsons, M.D., Ph.D., at Columbia University College of Physicians and Surgeons, led one of two teams that independently identified PTEN and discovered that knocking out PTEN sends a strong pro-growth signal on tumor cells.


Story Source:

The above story is based on materials provided by Columbia University Medical Center. Note: Materials may be edited for content and length.


Cite This Page:

Columbia University Medical Center. "New Investigational Treatment For Bladder Cancer Identified." ScienceDaily. ScienceDaily, 19 March 2009. <www.sciencedaily.com/releases/2009/03/090312174737.htm>.
Columbia University Medical Center. (2009, March 19). New Investigational Treatment For Bladder Cancer Identified. ScienceDaily. Retrieved July 25, 2014 from www.sciencedaily.com/releases/2009/03/090312174737.htm
Columbia University Medical Center. "New Investigational Treatment For Bladder Cancer Identified." ScienceDaily. www.sciencedaily.com/releases/2009/03/090312174737.htm (accessed July 25, 2014).

Share This




More Health & Medicine News

Friday, July 25, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Doctor At Forefront Of Fighting Ebola Outbreak Gets Ebola

Newsy (July 24, 2014) Sheik Umar Khan has treated many of the people infected in the Ebola outbreak, and now he's become one of them. Video provided by Newsy
Powered by NewsLook.com
Condemned Man's US Execution Takes Nearly Two Hours

Condemned Man's US Execution Takes Nearly Two Hours

AFP (July 24, 2014) America's death penalty debate raged Thursday after it took nearly two hours for Arizona to execute a prisoner who lost a Supreme Court battle challenging the experimental lethal drug cocktail. Duration: 00:55 Video provided by AFP
Powered by NewsLook.com
Can Watching TV Make You Feel Like A Failure?

Can Watching TV Make You Feel Like A Failure?

Newsy (July 24, 2014) A study by German researchers claims watching TV while you're stressed out can make you feel guilty and like a failure. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

    Health News

      Environment News

        Technology News



          Save/Print:
          Share:

          Free Subscriptions


          Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

          Get Social & Mobile


          Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

          Have Feedback?


          Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
          Mobile: iPhone Android Web
          Follow: Facebook Twitter Google+
          Subscribe: RSS Feeds Email Newsletters
          Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins