Featured Research

from universities, journals, and other organizations

Malaria: New Findings Highlight The Role Of Endothelial Cell Activation In Children With Cerebral Malaria

Date:
March 29, 2009
Source:
Public Library of Science
Summary:
Researchers have identified a novel pathway that may contribute to the high mortality associated with severe malaria in sub-Saharan African children. The study reports that severe Plasmodium falciparum infection results in disruption of the endothelium, causing release of ultra-large von Willebrand factor protein.

Researchers have identified a novel pathway that may contribute to the high mortality associated with severe malaria in sub-Saharan African children. The study reports that severe Plasmodium falciparum infection results in disruption of the endothelium, causing release of ultra-large von Willebrand factor (VWF) protein.

Related Articles


Together with reduced levels of VWF-specific cleaving enzyme ADAMTS13, this finding may contribute to our knowledge of the pathophysiology of malaria.

Severe P. falciparum malaria is responsible for an estimated 1 million deaths each year in sub-Saharan African children. In spite of this significant mortality, the mechanisms underlying the clinical development of severe malaria remain poorly understood. However, studies have shown that red blood cells (erythrocytes) infected with malaria parasites can adhere to the inner lining (endothelium) of small blood vessels. In this study, an international group of researchers, led by Dr. James O'Donnell of Trinity College Dublin, investigate the significance of this interaction between the infected erythrocytes and the blood vessel wall.

Over a one-year period, the group studied children under six years with severe P. falciparum malaria at the Komfo Anokye hospital in Kumasi, Ghana. In blood samples from these children, the researchers found that plasma levels of a specific adhesive protein, VWF, were markedly increased. The VWF protein is synthesized within endothelial cells, and plays a critical role in tethering circulating blood cells to the vascular wall at sites of injury. In order to prevent excessive blood clot formation, VWF activity in the blood is normally tightly regulated by ADAMTS13. In the Ghanaian children, the plasma levels of this important enzyme were also found to be significantly reduced.

Thus, severe P. falciparum infection causes disruption of the endothelium, resulting in the release of large amounts of VWF into the blood. Moreover, this VWF protein cannot be inactivated due to a concurrent decrease in plasma ADAMTS13 enzyme levels. Further studies will be required to define the role played by the abnormal, highly adhesive VWF in mediating the critical small-vessel obstruction associated with severe malaria. Nevertheless, these findings shed new light on the mechanisms underlying the interaction between the malaria parasite and its human host, and are not only of scientific interest, but may also create future new therapeutic opportunities for these children.


Story Source:

The above story is based on materials provided by Public Library of Science. Note: Materials may be edited for content and length.


Journal Reference:

  1. Larkin D, de Laat B, Jenkins PV, Bunn J, Craig AG, et al. Severe Plasmodium falciparum Malaria Is Associated with Circulating Ultra-Large von Willebrand Multimers and ADAMTS13 Inhibition. PLoS Pathog, 5(3): e1000349. DOI: 10.1371/journal.ppat.1000349

Cite This Page:

Public Library of Science. "Malaria: New Findings Highlight The Role Of Endothelial Cell Activation In Children With Cerebral Malaria." ScienceDaily. ScienceDaily, 29 March 2009. <www.sciencedaily.com/releases/2009/03/090319224530.htm>.
Public Library of Science. (2009, March 29). Malaria: New Findings Highlight The Role Of Endothelial Cell Activation In Children With Cerebral Malaria. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2009/03/090319224530.htm
Public Library of Science. "Malaria: New Findings Highlight The Role Of Endothelial Cell Activation In Children With Cerebral Malaria." ScienceDaily. www.sciencedaily.com/releases/2009/03/090319224530.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins