Featured Research

from universities, journals, and other organizations

Fitter Frames: Nanotubes Boost Structural Integrity Of Composites

Date:
April 3, 2009
Source:
Rensselaer Polytechnic Institute
Summary:
Chemists have demonstrated that incorporating chemically treated carbon nanotubes into an epoxy composite can significantly improve the overall toughness, fatigue resistance and durability of a composite frame. The discovery could lead to tougher, more durable composite frames for aircraft, watercraft and automobiles.

Researchers at Rensselaer have discovered a new technique for provoking unusual crazing behavior in epoxy composites. The crazing, which causes the composite to deform into a network of nanoscale pillar-like fibers that bridge together both sides of a crack and slow its growth, could lead to tougher, more durable components for aircraft and automobiles.
Credit: Image courtesy of Rensselaer Polytechnic Institute

A new research discovery at Rensselaer Polytechnic Institute could lead to tougher, more durable composite frames for aircraft, watercraft, and automobiles.

Epoxy composites are increasingly being incorporated into the design of new jets, planes, and other vehicles. Composite material frames are extremely lightweight, which lowers the overall weight of the vehicle and boosts fuel efficiency. The downside is that epoxy composites can be brittle, which is detrimental to its structural integrity.

Professor Nikhil Koratkar, of Rensselaer’s Department of Mechanical, Aerospace, and Nuclear Engineering, has demonstrated that incorporating chemically treated carbon nanotubes into an epoxy composite can significantly improve the overall toughness, fatigue resistance, and durability of a composite frame.

When subjected to repetitive stress, a composite frame infused with treated nanotubes exhibited a five-fold reduction in crack growth rate as compared to a frame infused with untreated nanotubes, and a 20-fold reduction when compared to a composite frame made without nanotubes.

This newfound toughness and crack resistance is due to the treated nanotubes, which enhance the molecular mobility of the epoxy at the interface where the two materials touch. When stressed, this enhanced mobility enables the epoxy to craze – or result in the formation of a network of pillar-like fibers that bridge together both sides of the crack and slow its growth.

“This crazing behavior, and the bridging fibers it produces, dramatically slows the growth rate of a crack,” Koratkar said. “In order for the crack to grow, those fibers have to first stretch, deform plastically, and then break. It takes a lot of energy to stretch and break those fibers, energy that would have otherwise gone toward enlarging the crack.”

Results of the study were just published in the journal Small.

Epoxy composites infused with carbon nanotubes are known to be more resistant to cracks than pure epoxy composites, as the nanotubes stitch, or bridge, the two sides of the crack together. Infusing an epoxy with carbon nanotubes that have been functionalized, or treated, with the chemical group amidoamine, however, results in a completely different bridging phenomenon.

At the interface of the functionalized nanotubes and the epoxy, the epoxy starts to craze, which is a highly unusual behavior for this particular type of composite, Koratkar said. The epoxy deforms, becomes more fluid, and creates connective fibers up to 10 microns in length and with a diameter between 100 nanometers and 1,000 nanometers.

“We didn’t expect this at all. Crazing is common in certain types of thermoplastic polymers, but very unusual in the type of epoxy composite we used,” Koratkar said. “In addition to improved fatigue resistance and toughness, the treated nanotubes also enhanced the stiffness, hardness, and strength of the epoxy composite, which is very important for structural applications.”

Koratkar said the aircraft, boat, and automobile industries are increasingly looking to composites as a building material to make vehicle frames and components lighter. His research group plans to further investigate crazing behavior in epoxy composites, in order to better understand why the chemical treatment of nanotubes initiates crazing.

Co-authors of the paper include Rensselaer Associate Professor Catalin Picu, of the Department of Mechanical, Aerospace, and Nuclear Engineering; Rensselaer doctoral students Wei Zhang and Iti Srivastava; and Yue-Feng Zhu, professor in the Department of Mechanical Engineering at Tsinghua University in China.


Story Source:

The above story is based on materials provided by Rensselaer Polytechnic Institute. Note: Materials may be edited for content and length.


Cite This Page:

Rensselaer Polytechnic Institute. "Fitter Frames: Nanotubes Boost Structural Integrity Of Composites." ScienceDaily. ScienceDaily, 3 April 2009. <www.sciencedaily.com/releases/2009/03/090326114411.htm>.
Rensselaer Polytechnic Institute. (2009, April 3). Fitter Frames: Nanotubes Boost Structural Integrity Of Composites. ScienceDaily. Retrieved April 23, 2014 from www.sciencedaily.com/releases/2009/03/090326114411.htm
Rensselaer Polytechnic Institute. "Fitter Frames: Nanotubes Boost Structural Integrity Of Composites." ScienceDaily. www.sciencedaily.com/releases/2009/03/090326114411.htm (accessed April 23, 2014).

Share This



More Matter & Energy News

Wednesday, April 23, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Is North Korea Planning Nuclear Test #4?

Is North Korea Planning Nuclear Test #4?

Newsy (Apr. 22, 2014) South Korean officials say North Korea is preparing to conduct another nuclear test, but is Pyongyang just bluffing this time? Video provided by Newsy
Powered by NewsLook.com
China Falls for 4x4s at Beijing Auto Show

China Falls for 4x4s at Beijing Auto Show

AFP (Apr. 22, 2014) The urban 4x4 is the latest must-have for Chinese drivers, whose conversion to the cult of the SUV is the talking point of this year's Beijing auto show. Duration: 00:40 Video provided by AFP
Powered by NewsLook.com
Lytro Introduces 'Illum,' A Professional Light-Field Camera

Lytro Introduces 'Illum,' A Professional Light-Field Camera

Newsy (Apr. 22, 2014) The light-field photography engineers at Lytro unveiled their next innovation: a professional DSLR-like camera called "Illum." Video provided by Newsy
Powered by NewsLook.com
3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

3 Reasons Why Harley Davidson Is Selling Tons of Epic Hogs

TheStreet (Apr. 22, 2014) Sales of motorcycles have continued to ride back from the depths of hell known as the Great Recession. Excluding scooters, sales of motorcycles increased 3% in 2013. In units, however, at 465,000 sold last year, the total remained about 50% below the peak hit in 2007. Industry leader Harley Davidson’s shareholders have benefited both by the industry recovery and positive headlines emanating from the company. Belus Capital Advisors CEO Brian Sozzi takes you beyond the headlines of the motorcycle maker. Video provided by TheStreet
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins