Featured Research

from universities, journals, and other organizations

New MRI Signaling Method Could Picture Disease Metabolism In Action

Date:
April 5, 2009
Source:
Duke University
Summary:
Chemists are using modified magnetic resonance imaging to see molecular changes inside people's bodies that could signal health problems such as cancer.

Duke University chemists are using modified magnetic resonance imaging to see molecular changes inside people's bodies that could signal health problems such as cancer.

Their new method, reported in the March 27 issue of the research journal Science, makes more of the body's chemistry visible by MRI, said Warren Warren, James B. Duke Professor of chemistry at Duke.

Standard MRI and the functional MRI used for brain imaging enlist the hydrogen atoms in water to create a graphic display in response to magnetic pulses and radio waves. But a huge array of water molecules are needed to pull that off.

"Only one out of every 100,000 water molecules in the body will actually contribute any useful signal to build that image," Warren said. "The water signal is not much different between tumors and normal tissue, but the other internal chemistry is different. So detecting other molecules, and how they change, would aid diagnosis."

The Duke team has been able to see these other molecules with MRI by "hyperpolarizing" some atoms in a sample, adjusting the spins of their nuclei to drastically increase their signal. This creates large imbalances among the populations of those spin states, making the molecules into more powerful magnets.

Unlike normal MRI, hyperpolarization and a technique called "dynamic nuclear polarization" (DNP) which was used for this research, can produce strong MRI signals from a variety of other kinds of atoms besides water. Without hyperpolarization, detecting signals from atoms besides water is exceedingly difficult because the signal size is so small. But "these signals are strong enough to see, even though the molecules are much more complex than water," Warren said.

Warren's group uses what he calls the "first DNP hyperpolarizer in the South," which is installed in his laboratory. It also uses Duke's Small Molecule Synthesis Facility to create custom molecular architectures.

"You thus have a signal that, at least transiently, can be thousands or ten thousands times stronger than regular hydrogen in an MRI," Warren said. "It lets you turn molecules you are interested in into MRI lightbulbs."

Duke's hyperpolarizer includes a superconducting magnet, a cryogenic cooling system that initially plunges temperatures to a scant 1.4 Kelvin degrees while microwave radiation transfers spin polarization from electrons to nuclei, and a heating system to rapidly warm the molecules back up.

Hyperpolarized spin states don't last for long inside the body, but ways have been found to lengthen them. Several years ago, another group discovered a method to make DNP work at room temperature in some biological molecules by substituting carbon-13 atoms for some of those molecules' normal carbon-12s. Unlike carbon-12, carbon-13 emits an NMR signal like hydrogen atoms do.

Using this room-temperature DNP, the biological molecule pyruvate can retain its MRI signal for as long as 40 seconds -- long enough to observe it undergoing rapid chemical change. "So you can watch pyruvate metabolize to produce lactate, acetic acid and bicarbonate -- all breakdown products that might correlate with cancer," Warren said. But most biological processes are much slower, and thus can't be seen with this method.

In its Science report, the Duke team describes a new method that can further extend the signals of molecules carrying swapped carbon-13s. It works by temporarily bottling-up the hyperpolarization in the longest-lived spin states -- called "singlet eigenstates" -- within specially designed molecular architectures. "You can actually use their own chemistries to get the molecules in and out of those protected states," Warren said.

For example, hyperpolarized populations locked within a specially prepared form of diacetyl -- a bacterially-made chemical that imparts buttery flavoring to foods -- can be stored using this method, according to the report. Once triggered, the MRI signal can be extended over many minutes before the spin states decay.

Thus bottled-up, the signals could be kept in temporary isolation. By dehydrating and shielding them from water within microscopic capsules, for example, these "signaling" molecules could be transported through the bloodstream to a potential disease site, Warren said.

Once at that site, a focused burst of ultrasound or heat could restore the molecules' missing water. That would cause a telltale signal to be released just as a rapidly progressing metabolic event was unfolding.

The Duke group is evaluating the potentials for a number of other possible signaling molecules, such as those involved in Parkinson's disease, osteoporosis and bladder control, said Warren, who has filed for a provisional patent.

The research was funded by the National Institutes of Health and the North Carolina Biotechnology Center.

Other authors of the Science report were graduate student Elizabeth Jenista, and Duke assistant research professors Rosa Tamara Branca and Xin Chen.


Story Source:

The above story is based on materials provided by Duke University. Note: Materials may be edited for content and length.


Journal Reference:

  1. Warren S. Warren, Elizabeth Jenista, Rosa Tamara Branca, and Xin Chen. Increasing Hyperpolarized Spin Lifetimes Through True Singlet Eigenstates. Science, 2009; 323 (5922): 1711 DOI: 10.1126/science.1167693

Cite This Page:

Duke University. "New MRI Signaling Method Could Picture Disease Metabolism In Action." ScienceDaily. ScienceDaily, 5 April 2009. <www.sciencedaily.com/releases/2009/03/090326141545.htm>.
Duke University. (2009, April 5). New MRI Signaling Method Could Picture Disease Metabolism In Action. ScienceDaily. Retrieved August 2, 2014 from www.sciencedaily.com/releases/2009/03/090326141545.htm
Duke University. "New MRI Signaling Method Could Picture Disease Metabolism In Action." ScienceDaily. www.sciencedaily.com/releases/2009/03/090326141545.htm (accessed August 2, 2014).

Share This




More Matter & Energy News

Saturday, August 2, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Tesla, Panasonic Ink Deal To Make Huge Battery 'Gigafactory'

Newsy (July 31, 2014) The deal will help build a massive battery factory that Tesla says will produce 500,000 lithium batteries by 2020. Video provided by Newsy
Powered by NewsLook.com
Britain Testing Driverless Cars on Roadways

Britain Testing Driverless Cars on Roadways

AP (July 30, 2014) British officials said on Wednesday that driverless cars will be tested on roads in as many as three cities in a trial program set to begin in January. Officials said the tests will last up to three years. (July 30) Video provided by AP
Powered by NewsLook.com
7 Ways to Use Toothpaste: Howdini Hacks

7 Ways to Use Toothpaste: Howdini Hacks

Howdini (July 30, 2014) Fresh breath and clean teeth are great, but have you ever thought, "my toothpaste could be doing more". Well, it can! Lots of things! Howdini has 7 new uses for this household staple. Video provided by Howdini
Powered by NewsLook.com
Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Smoked: 2015 Ducati Diavel Vs 2014 Chevy Corvette Stingray Drag Race

Cycle World (July 30, 2014) The Bonnier Motorcycle Group presents Smoked; a three part video series. In this episode the 2015 Ducati Diavel takes on the 2014 Chevy Corvette Stingray Video provided by Cycle World
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins