Featured Research

from universities, journals, and other organizations

Computer Simulations Explain The Limitations Of Working Memory

Date:
April 7, 2009
Source:
Karolinska Institutet
Summary:
Researchers have constructed a mathematical activity model of the brain's frontal and parietal parts, to increase the understanding of the capacity of the working memory and of how the billions of neurons in the brain interact. One of the findings they have made with this "model brain" is a mechanism in the brain's neuronal network that restricts the number of items we can normally store in our working memories at any one time to around two to seven.

Researchers at the Swedish medical university Karolinska Institutet (KI) have constructed a mathematical activity model of the brain's anterior and superior parts, to increase the understanding of the capacity of the working memory and of how the billions of neurons in the brain interact.

One of the findings they have made with this "model brain" is a mechanism in the brain's neuronal network that restricts the number of items we can normally store in our working memories at any one time to seven.

The working memory, which is our ability to retain and process information over time, is essential to most cognitive processes, such as thinking, language and planning. It has long been known that the working memory is subject to limitations, as we can only manage to "juggle" a certain number of mnemonic items at any one time. Functional magnetic resonance imagery (fMRI) has also revealed that the frontal and parietal lobes are activated when a sequence of two pictures is to be retained briefly in the visual working memory. However, just how the nerve cells work together to handle this task has remained a mystery.

The study, which is published in the journal PNAS, is based on a multidisciplinary project co-run by two research teams at KI led by professors Torkel Klinberg and Jesper Tegnιr. Most of the work was conducted by PhDs Fredrik Edin and Albert Compte, the latter of whom is currently principal investigator in theoretical neurobiology at IDIBAPS in Barcelona.

For their project, the researchers used techniques from different scientific fields, applying them to previously known data on how nerve cells and their synapses function biochemically and electrophysiologically. They then developed, using mathematical tools, a form of virtual or computer simulated model brain. The computations carried out with this "model brain" were tested using fMRI experiments, which allowed the researchers to confirm that the computations genuinely gave answers to the questions they asked.

"It's like a computer programme for aircraft designers," says Fredrik Edin, PhD in computational neuroscience. "Before testing the design for real, you feed in data on material and aerodynamics and so on to get an idea of how the plan's going to fly."

With their model brain, the team was able to discover why the working memory is only capable of retaining between two and seven different pictures simultaneously. As the working memory load rises, the active neurons in the parietal lobe increasingly inhibit the activity of surrounding cells. The inhibition of the inter-neuronal impulses eventually becomes so strong that it prevents the storage of additional visual input, although it can be partly offset through the greater stimulation of the frontal lobes. This leads the researchers to suggest in their article that the frontal lobes might be able to regulate the memory capacity of the parietal lobes.

"The model predicts, for instance, that the intense activation of the frontal lobes will improve working memory," continues Dr Edin. "This finding was also replicable in follow-up experiments on humans. The working memory is a bottleneck for the human brain's capacity to process information. These results give us fresh insight into what the bottleneck consists of."


Story Source:

The above story is based on materials provided by Karolinska Institutet. Note: Materials may be edited for content and length.


Journal Reference:

  1. Fredrik Edin, Torkel Klingberg, Pδr Johansson, Fiona McNab, Jesper Tegnιr and Albert Compte. Mechanism for top-down control of working memory capacity. PNAS, Online early edition 30 March - 3 April 2009

Cite This Page:

Karolinska Institutet. "Computer Simulations Explain The Limitations Of Working Memory." ScienceDaily. ScienceDaily, 7 April 2009. <www.sciencedaily.com/releases/2009/03/090331112639.htm>.
Karolinska Institutet. (2009, April 7). Computer Simulations Explain The Limitations Of Working Memory. ScienceDaily. Retrieved July 24, 2014 from www.sciencedaily.com/releases/2009/03/090331112639.htm
Karolinska Institutet. "Computer Simulations Explain The Limitations Of Working Memory." ScienceDaily. www.sciencedaily.com/releases/2009/03/090331112639.htm (accessed July 24, 2014).

Share This




More Mind & Brain News

Thursday, July 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

New Painkiller Designed To Discourage Abuse: Will It Work?

New Painkiller Designed To Discourage Abuse: Will It Work?

Newsy (July 24, 2014) — The FDA approved Targiniq ER on Wednesday, a painkiller designed to keep users from abusing it. Like any new medication, however, it has doubters. Video provided by Newsy
Powered by NewsLook.com
China's Ageing Millions Look Forward to Bleak Future

China's Ageing Millions Look Forward to Bleak Future

AFP (July 24, 2014) — China's elderly population is expanding so quickly that children struggle to look after them, pushing them to do something unexpected in Chinese society- move their parents into a nursing home. Duration: 02:07 Video provided by AFP
Powered by NewsLook.com
Idaho Boy Helps Brother With Disabilities Complete Triathlon

Idaho Boy Helps Brother With Disabilities Complete Triathlon

Newsy (July 23, 2014) — An 8-year-old boy helped his younger brother, who has a rare genetic condition that's confined him to a wheelchair, finish a triathlon. Video provided by Newsy
Powered by NewsLook.com
Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Huge Schizophrenia Study Finds Dozens Of New Genetic Causes

Newsy (July 22, 2014) — The 83 new genetic markers could open dozens of new avenues for schizophrenia treatment research. Video provided by Newsy
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins