Featured Research

from universities, journals, and other organizations

High-tech Speed Bump Detects Damage To Army Vehicles

Date:
April 14, 2009
Source:
Purdue University
Summary:
Researchers have developed a technology that detects damage to critical suspension components in military vehicles simply by driving over a speed-bump-like "diagnostic cleat" containing sensors.

Douglas Adams, a Purdue associate professor of mechanical engineering, and graduate student Tiffany DiPetta are working to develop a technology that detects damage to critical suspension components in military vehicles simply by driving over a speed bumplike "diagnostic cleat" containing sensors. The researchers have tested the system in experiments with high-mobility multipurpose wheeled vehicles, or HMMWVs, commonly known as Humvees.
Credit: Purdue News Service photo/Andrew Hancock

Researchers have developed a technology that detects damage to critical suspension components in military vehicles simply by driving over a speed bumplike "diagnostic cleat" containing sensors.

Related Articles


"Our aim is to save time and maintenance costs, but more importantly to reduce downtime by catching damage before it leads to failure in the field," said Douglas Adams, an associate professor of mechanical engineering and director of Purdue University's Center for Systems Integrity.

Purdue is working with the U.S. Army and Honeywell International Inc. to develop the technology.

The vehicles are driven over the "tactical wheeled vehicle diagnostic cleat," which is like a rubber-jacketed speed bump equipped with sensors called triaxial accelerometers. The system measures vibrations created by forces that a vehicle's tires apply to the cleat. Damage is detected in the tires, wheel bearings and suspension components by using signal processing software to interpret the sensor data.

"Let's say one of the tires is severely under pressure," Adams said. "The cleat tells you to turn around and fill up that tire because you are about to embark on a 10-hour mission with this vehicle. Or, you are returning the vehicle to the depot and the cleat tells you that the right rear suspension has a problem in the shock absorber or a critical bolt in the front suspension is broken. The maintenance personnel don't have to troubleshoot the vehicle. They know what to fix."

The system also could be used in commercial applications to test civilian vehicles, he said.

Research findings are detailed in a technical paper being presented April 22 during the Society of Automotive Engineers World Congress in Detroit. The researchers have filed for a patent on the technique, which has been nominated as a U.S. Army invention of the year by the Army's Tank Automotive Research, Development and Engineering Center, in Warren, Mich.

"The diagnostic cleat is designed to be quick and easy to use," said Joseph Gothamy, acting team leader for the reliability and durability modeling and simulation team at the U.S. Army center. "The last thing we want to do is take time from already overburdened soldiers and maintenance officers. The cleat is a quick first check to determine what's mechanically wrong with a vehicle before wasting time hunting for potentially simple problems."

The technical paper was written by Purdue mechanical engineering graduate student Tiffany DiPetta, Purdue senior research engineer David Koester, Adams, and four researchers from the U.S. Army: Gothamy, Paul Decker, David Lamb and David Gorsich, from the Tank Automotive Research, Development and Engineering Center.

"Operating and maintenance costs for military weapon systems accounted for about 60 percent of the $500 billion U.S. Department of Defense budget in 2006," Adams said. "Better diagnostic and prognostic technologies could reduce this expense and ensure readiness of ground vehicle fleets."

By using the instrumented cleat and other "condition-based" maintenance methods, the military could reduce costs by performing work on vehicles when needed based on the condition of parts instead of performing scheduled maintenance on vehicles regardless of whether they need the work.

"In theatre, some vehicles may be used at checkpoints while others may be hauling supplies hundreds of miles," Gothamy said. "Even if the same vehicle variant is used, they are on very different missions and trying to use the same regular maintenance schedule for both isn't always efficient or effective."

The researchers tested their system in experiments with high-mobility multipurpose wheeled vehicles, or Humvees, and also developed a computational model to simulate how the system works.

"Our simulated model showed us that we were capable of using the system accurately to detect damage to vehicle components, and our experiments with actual vehicles validated the model," said Adams, whose research also uses facilities at Purdue's Ray W. Herrick Laboratories. "The system was sensitive to as little as a 5 percent change in the stiffness of the suspension."

Findings show the method is capable of accurately identifying damage to vehicle tires and the suspension. A damaged coil spring in the front suspension of a Humvee was detected even when tire pressure was varied widely in attempt to confuse the system.

"This system is currently ready to acquire more data in Army depots, and we are working with the Tank Automotive Research, Development and Engineering Center to start a large vehicle survey exercise with vehicles coming back from overseas," Adams said. "Data will be used to determine the types of wear and tear exhibited by vehicles deployed in certain terrains."

The system does not require specialized training to operate, and it is relatively inexpensive, costing about $1,500, which is spread across the inventory of about 20,000 vehicles, Adams said.

The research has been funded by the U.S. Army and Honeywell International.

Future research could focus on refining the signal processing software to more precisely identify specific components in the vehicle's suspension system.


Story Source:

The above story is based on materials provided by Purdue University. Note: Materials may be edited for content and length.


Cite This Page:

Purdue University. "High-tech Speed Bump Detects Damage To Army Vehicles." ScienceDaily. ScienceDaily, 14 April 2009. <www.sciencedaily.com/releases/2009/04/090413180712.htm>.
Purdue University. (2009, April 14). High-tech Speed Bump Detects Damage To Army Vehicles. ScienceDaily. Retrieved November 24, 2014 from www.sciencedaily.com/releases/2009/04/090413180712.htm
Purdue University. "High-tech Speed Bump Detects Damage To Army Vehicles." ScienceDaily. www.sciencedaily.com/releases/2009/04/090413180712.htm (accessed November 24, 2014).

Share This


More From ScienceDaily



More Matter & Energy News

Monday, November 24, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Car Park Solution for Flexible Green Energy

Car Park Solution for Flexible Green Energy

Reuters - Innovations Video Online (Nov. 24, 2014) A British solar power start-up says that by covering millions of existing car park spaces around the UK with flexible solar panels, the country's power problems could be solved. Suzannah Butcher reports. Video provided by Reuters
Powered by NewsLook.com
Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Microsoft Adds Robot Guards, Ushers In Sci-Fi Apocalypse

Newsy (Nov. 23, 2014) Microsoft has robotic security guards working at its Silicon Valley Campus. Video provided by Newsy
Powered by NewsLook.com
US Army Completes Ebola Treatment Unit

US Army Completes Ebola Treatment Unit

Reuters - US Online Video (Nov. 22, 2014) The US Army of engineers completes Ebola treatment center in Liberia. Julie Noce reports. Video provided by Reuters
Powered by NewsLook.com
Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

Toyota's Hydrogen Fuel-Cell Green Car Soon Available in the US

AFP (Nov. 21, 2014) Toyota presented its hydrogen fuel-cell compact car called "Mirai" to US consumers at the Los Angeles auto show. The car should go on sale in 2015 for around $60.000. It combines stored hydrogen with oxygen to generate its own power. Duration: 01:18 Video provided by AFP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:

Strange & Offbeat Stories


Space & Time

Matter & Energy

Computers & Math

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins