Featured Research

from universities, journals, and other organizations

Brain Mechanisms For Behavioral Flexibility Discovered

Date:
April 16, 2009
Source:
Cell Press
Summary:
New research provides insight into how the brain can execute different actions in response to the same stimulus. The study suggests that information from single brain cells cannot be interpreted differently within a short time period, a finding that is important for understanding both normal cognition and psychiatric disorders.

New research provides insight into how the brain can execute different actions in response to the same stimulus. The study, published in the April 16 issue of the journal Neuron, suggests that information from single brain cells cannot be interpreted differently within a short time period, a finding that is important for understanding both normal cognition and psychiatric disorders.

Humans exhibit incredible flexibility when it comes to adjusting to the demands of a particular task. For example, when the word "blue" is written in red ink, separate responses to the color or the meaning of the word can be elicited. "Although the roles played by the frontal cortex in this kind of switching behavior have been well documented, little is known about how neural pathways governing sensory and motor associations accomplish such a switch," explains senior study author, Dr. Takanori Uka from the Juntendo University School of Medicine in Tokyo.

Dr. Uka and coauthor Dr. Ryo Sasaki investigated where and how identical sensory signals are converted into distinct motor signals. The researchers examined the responses of middle temporal (MT) neurons and the associations between MT neurons and downstream functions in monkeys as they switched between direction and depth discrimination tasks. Previous work has shown that the MT area is critical for both direction and depth discrimination.

The monkeys were trained to view dots on a screen and to indicate whether dots moved up or down when they saw the color magenta or whether the dots were nearer or father away when they saw the color cyan. "We found that neuronal sensitivities were nearly identical during both the direction and depth discrimination tasks; that is, neural activity depended on the visual stimulus and not the task itself," says Dr. Uka. This finding suggests that inputs to the MT area were not directly responsible for task switching.

Importantly, the researchers went on to show that signals from different MT populations were read out to perform different tasks. "We suggest that task switching is accomplished via the communication of distinct populations of MT neurons into a downstream decision system," explains Dr. Uka. "We hypothesize that single neurons probably cannot switch outputs in a short period of time, so the brain realizes behavioral flexibility by preparing separate pathways for each task through learning, and then chooses the appropriate pathways, rather than switching outputs, in a given trial."

The researchers include Ryo Sasaki, and Takanori Uka, of Juntendo University School of Medicine, Tokyo, Japan.


Story Source:

The above story is based on materials provided by Cell Press. Note: Materials may be edited for content and length.


Cite This Page:

Cell Press. "Brain Mechanisms For Behavioral Flexibility Discovered." ScienceDaily. ScienceDaily, 16 April 2009. <www.sciencedaily.com/releases/2009/04/090415120952.htm>.
Cell Press. (2009, April 16). Brain Mechanisms For Behavioral Flexibility Discovered. ScienceDaily. Retrieved August 27, 2014 from www.sciencedaily.com/releases/2009/04/090415120952.htm
Cell Press. "Brain Mechanisms For Behavioral Flexibility Discovered." ScienceDaily. www.sciencedaily.com/releases/2009/04/090415120952.htm (accessed August 27, 2014).

Share This




More Mind & Brain News

Wednesday, August 27, 2014

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

Alice in Wonderland Syndrome

Alice in Wonderland Syndrome

Ivanhoe (Aug. 27, 2014) It’s an unusual condition with a colorful name. Kids with “Alice in Wonderland” syndrome see sudden distortions in objects they’re looking at or their own bodies appear to change size, a lot like the main character in the Lewis Carroll story. Video provided by Ivanhoe
Powered by NewsLook.com
Stopping Schizophrenia Before Birth

Stopping Schizophrenia Before Birth

Ivanhoe (Aug. 27, 2014) Scientists have long called choline a “brain booster” essential for human development. Not only does it aid in memory and learning, researchers now believe choline could help prevent mental illness. Video provided by Ivanhoe
Powered by NewsLook.com
Personalized Brain Vaccine for Glioblastoma

Personalized Brain Vaccine for Glioblastoma

Ivanhoe (Aug. 27, 2014) Glioblastoma is the most common and aggressive brain cancer in humans. Now a new treatment using the patient’s own tumor could help slow down its progression and help patients live longer. Video provided by Ivanhoe
Powered by NewsLook.com
Brain Surgery in 3-D

Brain Surgery in 3-D

Ivanhoe (Aug. 27, 2014) Neurosurgeons now have a new approach to brain surgery using the same 3D glasses you’d put on at an IMAX movie theater. Video provided by Ivanhoe
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:

Breaking News:
from the past week

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile: iPhone Android Web
Follow: Facebook Twitter Google+
Subscribe: RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins