Featured Research

from universities, journals, and other organizations

Specific Lung Cancer Susceptibility Gene Identified

Date:
April 16, 2009
Source:
University of Cincinnati
Summary:
Cancer cell biologists have identified a distinct gene linked to increased lung cancer susceptibility and development. They say this gene -- known as RGS17 -- could result in a genetic predisposition to develop lung cancer for people with a strong family history of the disease.

Marshall Anderson, PhD.
Credit: Image courtesy of University of Cincinnati

University of Cincinnati (UC) cancer cell biologists have identified a distinct gene linked to increased lung cancer susceptibility and development. They say this gene—known as RGS17—could result in a genetic predisposition to develop lung cancer for people with a strong family history of the disease.

Related Articles


With further investigation, they believe the gene could be used to identify high-risk patients who may benefit from earlier, more aggressive lung cancer screening.   

Marshall Anderson, PhD, and his colleagues report their findings in the April 15, 2009, issue of the journal Clinical Cancer Research.

“Understanding how the RGS17 gene impacts cancer development could change clinical diagnosis and treatment as radically as discovery of the breast cancer genes (BRCA1 and BRCA2) did,” explains Anderson, who has led the multi-institutional Genetic Epidemiology of Lung Cancer Consortium (GELCC) studying the genetic basis of lung cancer since 1997.  “A proven genetic test could help us identify people at risk before the disease progresses.”

According to the American Cancer Society, lung cancer is the leading cause of cancer related disease and death. Although tobacco smoke is the primary environmental cause of the disease, science has shown there is also a strong genetic component to the disease.

“This study represents a significant contribution to our understanding of lung cancer susceptibility and is another step toward to the goal of preventive medicine,” says David Christiani, MD, MPH, a professor of occupational medicine and environmental health at the Harvard School of Public Health, whose two-page commentary on the study is published in conjunction with the GELCC team’s scientific findings. “The authors undertook a daunting challenge of performing a family-based study of lung cancer in an effort to identify specific causal genes.”

Genes, which are located in fixed positions on the cell's chromosomes, carry the DNA code that determines inherited characteristics, including a risk of certain diseases.

For this study, Anderson and his multi-institutional team collected biological samples from numerous multigenerational families with five or more members who were affected by lung cancer. Through a combination of what is known as “fine mapping”—where genetic information is dissected and analyzed—and genetic association studies, researchers identified RGS17 as a major candidate susceptibility gene for familial lung cancers.

Research has shown that lung cancer can occur sporadically—where people have no known risk factors or family history—or hereditarily, occurring in multiple members of the same family. In 2004, Anderson’s team reported the first genetic evidence of a major lung cancer “susceptibility locus” on chromosome 6, and evidence of a susceptibility region on three other chromosomes.

The region of the original chromosome where the lung cancer markers were found contained about 100 genes, including several genes suspected to be involved in tumor suppression and cell growth.

Using a genetically altered mouse model, researchers determined that when RGS17 was suppressed, lung tumors shrank, proving the gene was involved in cancer development and must be present for cancer growth.

“What was most interesting is that this same gene was over-expressed in 60 percent of the samples from non-hereditary lung tumors,” explains Anderson. “This suggests that perhaps epigenetic factors may be contributing to abnormal genetic development.”

The UC-led team will conduct additional research to investigate how environmental factors may influence familial cancer development.

Funding for this research comes from the National Institutes of Health through the Genetic Epidemiology of Lung Cancer Consortium, a collaborative research effort established in 1997 to research the genetic origins of familial lung cancers. Anderson serves as principal investigator. Collaborating institutions include Washington University-St. Louis, Mayo Clinic-Rochester, University of Colorado, University of Texas Southwestern Medical Center, Louisiana State University, Saccomanno Research Institute, National Cancer Institute, National Human Genome Research Institute, Karmanos Cancer Institute, University of Toledo and M.D. Anderson Cancer Center-Houston.  


Story Source:

The above story is based on materials provided by University of Cincinnati. Note: Materials may be edited for content and length.


Cite This Page:

University of Cincinnati. "Specific Lung Cancer Susceptibility Gene Identified." ScienceDaily. ScienceDaily, 16 April 2009. <www.sciencedaily.com/releases/2009/04/090415141219.htm>.
University of Cincinnati. (2009, April 16). Specific Lung Cancer Susceptibility Gene Identified. ScienceDaily. Retrieved March 29, 2015 from www.sciencedaily.com/releases/2009/04/090415141219.htm
University of Cincinnati. "Specific Lung Cancer Susceptibility Gene Identified." ScienceDaily. www.sciencedaily.com/releases/2009/04/090415141219.htm (accessed March 29, 2015).

Share This


More From ScienceDaily



More Health & Medicine News

Sunday, March 29, 2015

Featured Research

from universities, journals, and other organizations


Featured Videos

from AP, Reuters, AFP, and other news services

S. Leone in New Anti-Ebola Lockdown

S. Leone in New Anti-Ebola Lockdown

AFP (Mar. 28, 2015) — Sierra Leone imposed a three-day nationwide lockdown Friday for the second time in six months in a bid to prevent a resurgence of the deadly Ebola virus. Duration: 01:17 Video provided by AFP
Powered by NewsLook.com
These Popular Antibiotics Can Cause Permanent Nerve Damage

These Popular Antibiotics Can Cause Permanent Nerve Damage

Newsy (Mar. 27, 2015) — A popular class of antibiotic can leave patients in severe pain and even result in permanent nerve damage. Video provided by Newsy
Powered by NewsLook.com
WH Plan to Fight Antibiotic-Resistant Germs

WH Plan to Fight Antibiotic-Resistant Germs

AP (Mar. 27, 2015) — The White House on Friday announced a five-year plan to fight the threat posed by antibiotic-resistant bacteria amid fears that once-treatable germs could become deadly. (March 27) Video provided by AP
Powered by NewsLook.com
House Ready to Pass Medicare Doc Bill

House Ready to Pass Medicare Doc Bill

AP (Mar. 26, 2015) — In rare bipartisan harmony, congressional leaders pushed a $214 billion bill permanently blocking physician Medicare cuts toward House passage Thursday, moving lawmakers closer to resolving a problem that has plagued them for years. (March 26) Video provided by AP
Powered by NewsLook.com

Search ScienceDaily

Number of stories in archives: 140,361

Find with keyword(s):
 
Enter a keyword or phrase to search ScienceDaily for related topics and research stories.

Save/Print:
Share:  

Breaking News:

Strange & Offbeat Stories

 

Health & Medicine

Mind & Brain

Living & Well

In Other News

... from NewsDaily.com

Science News

Health News

Environment News

Technology News



Save/Print:
Share:  

Free Subscriptions


Get the latest science news with ScienceDaily's free email newsletters, updated daily and weekly. Or view hourly updated newsfeeds in your RSS reader:

Get Social & Mobile


Keep up to date with the latest news from ScienceDaily via social networks and mobile apps:

Have Feedback?


Tell us what you think of ScienceDaily -- we welcome both positive and negative comments. Have any problems using the site? Questions?
Mobile iPhone Android Web
Follow Facebook Twitter Google+
Subscribe RSS Feeds Email Newsletters
Latest Headlines Health & Medicine Mind & Brain Space & Time Matter & Energy Computers & Math Plants & Animals Earth & Climate Fossils & Ruins